Deep learning-based generation of DSC MRI parameter maps using DCE MRI data.

Haoyang Pei, Yixuan Lyu, Sebastian Lambrecht, Doris Lin, Li Feng, Fang Liu, Paul Nyquist, Peter van Zijl, Linda Knutsson, Xiang Xu
{"title":"Deep learning-based generation of DSC MRI parameter maps using DCE MRI data.","authors":"Haoyang Pei, Yixuan Lyu, Sebastian Lambrecht, Doris Lin, Li Feng, Fang Liu, Paul Nyquist, Peter van Zijl, Linda Knutsson, Xiang Xu","doi":"10.3174/ajnr.A8768","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Perfusion and perfusion-related parameter maps obtained using dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are both useful for clinical diagnosis and research. However, using both DSC and DCE MRI in the same scan session requires two doses of gadolinium contrast agent. The objective was to develop deep-learning based methods to synthesize DSC-derived parameter maps from DCE MRI data.</p><p><strong>Materials and methods: </strong>Independent analysis of data collected in previous studies was performed. The database contained sixty-four participants, including patients with and without brain tumors. The reference parameter maps were measured from DSC MRI performed following DCE MRI. A conditional generative adversarial network (cGAN) was designed and trained to generate synthetic DSC-derived maps from DCE MRI data. The median parameter values and distributions between synthetic and real maps were compared using linear regression and Bland-Altman plots.</p><p><strong>Results: </strong>Using cGAN, realistic DSC parameter maps could be synthesized from DCE MRI data. For controls without brain tumors, the synthesized parameters had distributions similar to the ground truth values. For patients with brain tumors, the synthesized parameters in the tumor region correlated linearly with the ground truth values. In addition, areas not visible due to susceptibility artifacts in real DSC maps could be visualized using DCE-derived DSC maps.</p><p><strong>Conclusions: </strong>DSC-derived parameter maps could be synthesized using DCE MRI data, including susceptibility-artifact-prone regions. This shows the potential to obtain both DSC and DCE parameter maps from DCE MRI using a single dose of contrast agent.</p><p><strong>Abbreviations: </strong>cGAN=conditional generative adversarial network; K<sup>trans</sup>=volume transfer constant; rCBV=relative cerebral blood volume; rCBF=relative cerebral blood flow; V<sub>e</sub>=extravascular extracellular volume; V<sub>p</sub>=plasma volume.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Perfusion and perfusion-related parameter maps obtained using dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are both useful for clinical diagnosis and research. However, using both DSC and DCE MRI in the same scan session requires two doses of gadolinium contrast agent. The objective was to develop deep-learning based methods to synthesize DSC-derived parameter maps from DCE MRI data.

Materials and methods: Independent analysis of data collected in previous studies was performed. The database contained sixty-four participants, including patients with and without brain tumors. The reference parameter maps were measured from DSC MRI performed following DCE MRI. A conditional generative adversarial network (cGAN) was designed and trained to generate synthetic DSC-derived maps from DCE MRI data. The median parameter values and distributions between synthetic and real maps were compared using linear regression and Bland-Altman plots.

Results: Using cGAN, realistic DSC parameter maps could be synthesized from DCE MRI data. For controls without brain tumors, the synthesized parameters had distributions similar to the ground truth values. For patients with brain tumors, the synthesized parameters in the tumor region correlated linearly with the ground truth values. In addition, areas not visible due to susceptibility artifacts in real DSC maps could be visualized using DCE-derived DSC maps.

Conclusions: DSC-derived parameter maps could be synthesized using DCE MRI data, including susceptibility-artifact-prone regions. This shows the potential to obtain both DSC and DCE parameter maps from DCE MRI using a single dose of contrast agent.

Abbreviations: cGAN=conditional generative adversarial network; Ktrans=volume transfer constant; rCBV=relative cerebral blood volume; rCBF=relative cerebral blood flow; Ve=extravascular extracellular volume; Vp=plasma volume.

基于深度学习的DCE MRI数据生成DSC MRI参数图。
背景和目的:使用动态易感对比(DSC)磁共振成像和动态对比增强(DCE)磁共振成像获得的灌注和灌注相关参数图均可用于临床诊断和研究。然而,在同一次扫描中同时使用 DSC 和 DCE MRI 需要使用两种剂量的钆对比剂。我们的目标是开发基于深度学习的方法,从 DCE MRI 数据中合成 DSC 衍生参数图:对以往研究中收集的数据进行了独立分析。数据库包含六十四名参与者,其中包括脑肿瘤患者和非脑肿瘤患者。参考参数图是在 DCE MRI 之后通过 DSC MRI 测得的。设计并训练了一个条件生成对抗网络(cGAN),用于从 DCE MRI 数据生成合成的 DSC 导出图。使用线性回归和 Bland-Altman 图比较了合成图和真实图之间的中位参数值和分布:结果:使用 cGAN 可以从 DCE MRI 数据合成真实的 DSC 参数图。对于无脑肿瘤的对照组,合成参数的分布与地面真实值相似。对于脑肿瘤患者,肿瘤区域的合成参数与地面真实值呈线性相关。此外,由于真实 DSC 地图中的易感性伪影而不可见的区域也可以通过 DCE 衍生的 DSC 地图观察到:结论:可以使用 DCE MRI 数据合成 DSC 衍生参数图,包括易受感性伪影影响的区域。缩写:cGAN=条件生成对抗网络;Ktrans=容积转移常数;rCBV=相对脑血量;rCBF=相对脑血流;Ve=血管外细胞外容积;Vp=血浆容积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信