Optimizing photon capture: advancements in amorphous silicon-based microchannel plates.

Samira Frey, Luca Antognini, Jad Benserhir, Emanuele Ripiccini, Coenraad de Koning, Andreas Riedo, Mohamed Belhaj, Claudio Bruschini, Edoardo Charbon, Christophe Ballif, Nicolas Wyrsch
{"title":"Optimizing photon capture: advancements in amorphous silicon-based microchannel plates.","authors":"Samira Frey, Luca Antognini, Jad Benserhir, Emanuele Ripiccini, Coenraad de Koning, Andreas Riedo, Mohamed Belhaj, Claudio Bruschini, Edoardo Charbon, Christophe Ballif, Nicolas Wyrsch","doi":"10.1038/s44172-025-00394-6","DOIUrl":null,"url":null,"abstract":"<p><p>Microchannel plates are electron multipliers widely used in applications such as particle detection, imaging, or mass spectrometry and are often paired with a photocathode to enable photon detection. Conventional microchannel plates, made of glass fibers, face limitations in manufacturing flexibility and integration with electronic readouts. Hydrogenated amorphous silicon-based microchannel plates offer a compelling alternative and provide unique advantages in these areas. Here, we report on the characterization of the time resolution of amorphous silicon-based microchannel plates. Using high photoelectron flux and an amplifier, we measured a time resolution of (4.6 ± 0.1) ps, while at lower fluxes, the arrival time uncertainty increased to (12.6 ± 0.2) ps. By minimizing the distance between the detector and a low-noise amplifier, we achieved a time resolution of (6.1 ± 0.2) ps even at low fluxes, demonstrating the exceptional timing capabilities of these detectors. Furthermore, we developed a new detector generation with funnel-shaped channel openings, increasing the active area to 95% and with simulated electron detection efficiency over 92%. Preliminary testing shows promising results, though challenges remain in single-particle detection. These findings highlight the potential of amorphous silicon-based microchannel plates for applications requiring high temporal resolution and detection efficiency.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"64"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00394-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microchannel plates are electron multipliers widely used in applications such as particle detection, imaging, or mass spectrometry and are often paired with a photocathode to enable photon detection. Conventional microchannel plates, made of glass fibers, face limitations in manufacturing flexibility and integration with electronic readouts. Hydrogenated amorphous silicon-based microchannel plates offer a compelling alternative and provide unique advantages in these areas. Here, we report on the characterization of the time resolution of amorphous silicon-based microchannel plates. Using high photoelectron flux and an amplifier, we measured a time resolution of (4.6 ± 0.1) ps, while at lower fluxes, the arrival time uncertainty increased to (12.6 ± 0.2) ps. By minimizing the distance between the detector and a low-noise amplifier, we achieved a time resolution of (6.1 ± 0.2) ps even at low fluxes, demonstrating the exceptional timing capabilities of these detectors. Furthermore, we developed a new detector generation with funnel-shaped channel openings, increasing the active area to 95% and with simulated electron detection efficiency over 92%. Preliminary testing shows promising results, though challenges remain in single-particle detection. These findings highlight the potential of amorphous silicon-based microchannel plates for applications requiring high temporal resolution and detection efficiency.

优化光子捕获:非晶硅基微通道板的进展。
微通道板是电子倍增器,广泛应用于粒子检测、成像或质谱等应用,通常与光电阴极配对以实现光子检测。传统的微通道板由玻璃纤维制成,在制造灵活性和与电子读数的集成方面面临限制。氢化非晶硅基微通道板在这些领域提供了一个引人注目的替代方案,并提供了独特的优势。本文报道了非晶硅基微通道板的时间分辨率表征。使用高光电子通量和放大器,我们测量到的时间分辨率为(4.6±0.1)ps,而在较低通量下,到达时间不确定性增加到(12.6±0.2)ps。通过最小化探测器与低噪声放大器之间的距离,即使在低通量下,我们也实现了(6.1±0.2)ps的时间分辨率,证明了这些探测器的特殊定时能力。此外,我们开发了具有漏斗形通道开口的新一代探测器,将有效面积增加到95%,模拟电子检测效率超过92%。初步的测试显示了有希望的结果,尽管单粒子检测仍然存在挑战。这些发现突出了非晶硅基微通道板在需要高时间分辨率和检测效率的应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信