Trajectory-oriented optimization of stochastic epidemiological models.

Arindam Fadikar, Mickaël Binois, Nicholson Collier, Abby Stevens, Kok Ben Toh, Jonathan Ozik
{"title":"Trajectory-oriented optimization of stochastic epidemiological models.","authors":"Arindam Fadikar, Mickaël Binois, Nicholson Collier, Abby Stevens, Kok Ben Toh, Jonathan Ozik","doi":"10.1109/wsc60868.2023.10408258","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological models must be calibrated to ground truth for downstream tasks such as producing forward projections or running what-if scenarios. The meaning of calibration changes in case of a stochastic model since output from such a model is generally described via an ensemble or a distribution. Each member of the ensemble is usually mapped to a random number seed (explicitly or implicitly). With the goal of finding not only the input parameter settings but also the random seeds that are consistent with the ground truth, we propose a class of Gaussian process (GP) surrogates along with an optimization strategy based on Thompson sampling. This <i>Trajectory Oriented Optimization</i> (TOO) approach produces actual trajectories close to the empirical observations instead of a set of parameter settings where only the mean simulation behavior matches with the ground truth.</p>","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"2023 ","pages":"1244-1255"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wsc60868.2023.10408258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epidemiological models must be calibrated to ground truth for downstream tasks such as producing forward projections or running what-if scenarios. The meaning of calibration changes in case of a stochastic model since output from such a model is generally described via an ensemble or a distribution. Each member of the ensemble is usually mapped to a random number seed (explicitly or implicitly). With the goal of finding not only the input parameter settings but also the random seeds that are consistent with the ground truth, we propose a class of Gaussian process (GP) surrogates along with an optimization strategy based on Thompson sampling. This Trajectory Oriented Optimization (TOO) approach produces actual trajectories close to the empirical observations instead of a set of parameter settings where only the mean simulation behavior matches with the ground truth.

随机流行病学模型的轨迹优化。
必须对流行病学模型进行校准,使其符合下游任务的基本事实,例如进行前瞻性预测或运行假设情景。在随机模型的情况下,校准的意义发生了变化,因为这种模型的输出通常通过集合或分布来描述。集合的每个成员通常映射到一个随机数种子(显式或隐式)。为了不仅找到输入参数设置,而且找到与基本真理一致的随机种子,我们提出了一类高斯过程(GP)替代品以及基于汤普森抽样的优化策略。这种轨迹导向优化(TOO)方法产生接近经验观察的实际轨迹,而不是一组参数设置,其中只有平均模拟行为与基本事实相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信