Xiao Li, Feng Jiang, Qing Liu, Zizheng Zhang, Wenjing Fang, Yutong Wang, Hongran Liu, Le Kang
{"title":"GAF-dependent chromatin plasticity determines promoter usage to mediate locust gregarious behavior.","authors":"Xiao Li, Feng Jiang, Qing Liu, Zizheng Zhang, Wenjing Fang, Yutong Wang, Hongran Liu, Le Kang","doi":"10.1038/s44318-025-00428-x","DOIUrl":null,"url":null,"abstract":"<p><p>Locusts, as devastating pests, can reversibly transform between solitary individuals and gregarious swarms with markedly different behaviors. Epigenetic regulation orchestrated by changes in chromatin openness modulates behavioral plasticity by controlling gene expression. However, the gene regulation mechanisms by which chromatin openness controls behavioral changes remain largely unknown. Here, we explored the regulatory function of chromatin openness in modulating behavioral plasticity, in which the remodeler GAF regulated brain-specific promoter usage in locusts. The increased chromatin openness in gregarious locusts initiated transcription of the brain-specific promoter of henna, a critical gene in dopamine synthesis and gregarious behavior mediation. Furthermore, GAF-dependent chromatin openness responded coordinately to population density changes. Fragment mutagenesis abolished henna promoter activity due to the dysfunction of the GAF-binding site. Mechanistically, the three GAF-binding sites played a synergetic role in remodeling chromatin openness and activating transcription initiation. Our study reveals a novel epigenetic mechanism linking chromatin regulation with behavioral polyphenism in insects during environmental changes.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00428-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Locusts, as devastating pests, can reversibly transform between solitary individuals and gregarious swarms with markedly different behaviors. Epigenetic regulation orchestrated by changes in chromatin openness modulates behavioral plasticity by controlling gene expression. However, the gene regulation mechanisms by which chromatin openness controls behavioral changes remain largely unknown. Here, we explored the regulatory function of chromatin openness in modulating behavioral plasticity, in which the remodeler GAF regulated brain-specific promoter usage in locusts. The increased chromatin openness in gregarious locusts initiated transcription of the brain-specific promoter of henna, a critical gene in dopamine synthesis and gregarious behavior mediation. Furthermore, GAF-dependent chromatin openness responded coordinately to population density changes. Fragment mutagenesis abolished henna promoter activity due to the dysfunction of the GAF-binding site. Mechanistically, the three GAF-binding sites played a synergetic role in remodeling chromatin openness and activating transcription initiation. Our study reveals a novel epigenetic mechanism linking chromatin regulation with behavioral polyphenism in insects during environmental changes.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.