Sanjna Rana, Antonio Torlentino, Pavana Suresh, W Todd Miller, Erwin London
{"title":"Lipid Exchange Assay in Living Cells.","authors":"Sanjna Rana, Antonio Torlentino, Pavana Suresh, W Todd Miller, Erwin London","doi":"10.3791/68008","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid rafts are dynamic, ordered domains in the plasma membrane often formed during membrane protein clustering and signaling. The lipid identity of the outer leaflet drives the membrane's propensity to form lipid rafts. The transient nature of lipid rafts makes it difficult to study in living cells. Therefore, methods that add or remove raft-forming lipids at the outer leaflet of living cells facilitate studying the characteristics of rafts, such as their effects on membrane proteins. Lipid exchange experiments developed in our lab utilize lipid-loaded cyclodextrins to remove and add exogenous phospholipids to change the lipid constitution of the plasma membrane. Substituting the membrane with a raft or non-raft-forming lipid can aid in studying the effects on transmembrane protein activity. Here, we describe a method for lipid exchange on the outer leaflet of the plasma membrane using lipid-loaded cyclodextrin. We demonstrate the preparation of the exchange media and the subsequent treatment of attached mammalian cells. We also showcase how to measure the efficiency of exchange using HP-TLC. This protocol yields a nearly complete replacement of the outer leaflet with exogenous lipids without altering cellular viability, permitting further experimentation on modified intact plasma membranes.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 217","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68008","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid rafts are dynamic, ordered domains in the plasma membrane often formed during membrane protein clustering and signaling. The lipid identity of the outer leaflet drives the membrane's propensity to form lipid rafts. The transient nature of lipid rafts makes it difficult to study in living cells. Therefore, methods that add or remove raft-forming lipids at the outer leaflet of living cells facilitate studying the characteristics of rafts, such as their effects on membrane proteins. Lipid exchange experiments developed in our lab utilize lipid-loaded cyclodextrins to remove and add exogenous phospholipids to change the lipid constitution of the plasma membrane. Substituting the membrane with a raft or non-raft-forming lipid can aid in studying the effects on transmembrane protein activity. Here, we describe a method for lipid exchange on the outer leaflet of the plasma membrane using lipid-loaded cyclodextrin. We demonstrate the preparation of the exchange media and the subsequent treatment of attached mammalian cells. We also showcase how to measure the efficiency of exchange using HP-TLC. This protocol yields a nearly complete replacement of the outer leaflet with exogenous lipids without altering cellular viability, permitting further experimentation on modified intact plasma membranes.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.