AMRLearn: Protocol for a machine learning pipeline for characterization of antimicrobial resistance determinants in microbial genomic data.

IF 1.3 Q4 BIOCHEMICAL RESEARCH METHODS
Xi Zhang, Yining Hu, Zhenyu Cheng, John M Archibald
{"title":"AMRLearn: Protocol for a machine learning pipeline for characterization of antimicrobial resistance determinants in microbial genomic data.","authors":"Xi Zhang, Yining Hu, Zhenyu Cheng, John M Archibald","doi":"10.1016/j.xpro.2025.103733","DOIUrl":null,"url":null,"abstract":"<p><p>Single-nucleotide polymorphisms (SNPs) are useful biomarkers for linking genotype to phenotype. Machine learning is powerful for predicting antimicrobial resistance (AMR) from bacterial genome sequence data. Here, we present AMRLearn, a machine learning pipeline to assist users in the prediction and visualization of AMR phenotypes associated with SNP genotypes. We describe the steps needed for input data preparation, prediction model selection, and result visualization. AMRLearn is useful for researchers wanting to extract information relevant to AMR from whole-genome sequence data.</p>","PeriodicalId":34214,"journal":{"name":"STAR Protocols","volume":"6 2","pages":"103733"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xpro.2025.103733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-nucleotide polymorphisms (SNPs) are useful biomarkers for linking genotype to phenotype. Machine learning is powerful for predicting antimicrobial resistance (AMR) from bacterial genome sequence data. Here, we present AMRLearn, a machine learning pipeline to assist users in the prediction and visualization of AMR phenotypes associated with SNP genotypes. We describe the steps needed for input data preparation, prediction model selection, and result visualization. AMRLearn is useful for researchers wanting to extract information relevant to AMR from whole-genome sequence data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
STAR Protocols
STAR Protocols Biochemistry, Genetics and Molecular Biology-General Biochemistry, Genetics and Molecular Biology
CiteScore
2.00
自引率
0.00%
发文量
789
审稿时长
10 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信