Combining semiparametric and machine learning approaches for short-term prediction of satellite clock bias.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lihong Jin, Wanzhuo Zhao, Xiong Pan, Qingsong Ai, Mao Cai, Xiaoli Ruan
{"title":"Combining semiparametric and machine learning approaches for short-term prediction of satellite clock bias.","authors":"Lihong Jin, Wanzhuo Zhao, Xiong Pan, Qingsong Ai, Mao Cai, Xiaoli Ruan","doi":"10.1038/s41598-025-95876-0","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate modeling of satellite clock bias (SCB) is critical for enhancing high-precision positioning capabilities. Existing approaches, such as semiparametric adjustment models and neural networks, address the nonlinearity and non-stationarity of SCB time series, as well as potential distortions from trend and noise component overlap. However, these methods encounter practical limitations, particularly in the selection of kernel functions for semiparametric models and the initialization of parameters for neural networks. To overcome these challenges, this paper introduces a novel integrated model called the Semi-LFA-Informer (SLFAI) model. Moreover, this model combines semiparametric techniques with optimized self-attention neural networks and is applied to predict SCB for BDS-3. Its performance is compared with other models, including quadratic polynomial (QP), spectral analysis (SA), and long short-term memory (LSTM) networks. The comparison is focused on prediction stability and accuracy. The experimental results show that the proposed method can not only effectively solve the problem of the generalization ability, but also significantly enhance the computational efficiency and accuracy. The SLFAI model achieves average prediction accuracies exceeding 0.15 ns, 0.25 ns, and 0.35 ns for 3-hour, 6-hour, and 12-hour forecasts, respectively, Meanwhile, compared with the other three models, The SLFAI model shows an average prediction accuracy improvement of approximately 53.6%, 59.4%, and 43.5% for the 3-hour, 6-hour, and 12-hour forecasts, respectively, representing a new approach to acquiring high-quality SCB.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11880"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95876-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate modeling of satellite clock bias (SCB) is critical for enhancing high-precision positioning capabilities. Existing approaches, such as semiparametric adjustment models and neural networks, address the nonlinearity and non-stationarity of SCB time series, as well as potential distortions from trend and noise component overlap. However, these methods encounter practical limitations, particularly in the selection of kernel functions for semiparametric models and the initialization of parameters for neural networks. To overcome these challenges, this paper introduces a novel integrated model called the Semi-LFA-Informer (SLFAI) model. Moreover, this model combines semiparametric techniques with optimized self-attention neural networks and is applied to predict SCB for BDS-3. Its performance is compared with other models, including quadratic polynomial (QP), spectral analysis (SA), and long short-term memory (LSTM) networks. The comparison is focused on prediction stability and accuracy. The experimental results show that the proposed method can not only effectively solve the problem of the generalization ability, but also significantly enhance the computational efficiency and accuracy. The SLFAI model achieves average prediction accuracies exceeding 0.15 ns, 0.25 ns, and 0.35 ns for 3-hour, 6-hour, and 12-hour forecasts, respectively, Meanwhile, compared with the other three models, The SLFAI model shows an average prediction accuracy improvement of approximately 53.6%, 59.4%, and 43.5% for the 3-hour, 6-hour, and 12-hour forecasts, respectively, representing a new approach to acquiring high-quality SCB.

Abstract Image

Abstract Image

Abstract Image

结合半参数和机器学习方法进行卫星时钟偏差短期预测。
卫星时钟偏差的精确建模是提高高精度定位能力的关键。现有的方法,如半参数平差模型和神经网络,解决了SCB时间序列的非线性和非平稳性,以及趋势和噪声分量重叠造成的潜在扭曲。然而,这些方法遇到了实际的限制,特别是在半参数模型核函数的选择和神经网络参数的初始化方面。为了克服这些挑战,本文引入了一种新的集成模型,称为半lfa - informer (SLFAI)模型。此外,该模型将半参数技术与优化的自关注神经网络相结合,应用于北斗三号系统的SCB预测。比较了二次多项式(QP)、谱分析(SA)和长短期记忆(LSTM)网络等模型的性能。比较的重点是预测的稳定性和准确性。实验结果表明,该方法不仅有效地解决了泛化能力问题,而且显著提高了计算效率和精度。SLFAI模型在3小时、6小时和12小时预报的平均预报精度分别超过0.15、0.25和0.35 ns,与其他3种模型相比,SLFAI模型在3小时、6小时和12小时预报的平均预报精度分别提高了约53.6%、59.4%和43.5%,代表了一种获取高质量SCB的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信