MetaDAVis: An R shiny application for metagenomic data analysis and visualization.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-04-07 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0319949
Sankarasubramanian Jagadesan, Chittibabu Guda
{"title":"MetaDAVis: An R shiny application for metagenomic data analysis and visualization.","authors":"Sankarasubramanian Jagadesan, Chittibabu Guda","doi":"10.1371/journal.pone.0319949","DOIUrl":null,"url":null,"abstract":"<p><p>The human microbiome exerts tremendous influence on maintaining a balance between human health and disease. High-throughput sequencing has enabled the study of microbial communities at an unprecedented resolution. Generation of massive amounts of sequencing data has also presented novel challenges to analyzing and visualizing data to make biologically relevant interpretations. We have developed an interactive Metagenome Data Analysis and Visualization (MetaDAVis) tool for 16S rRNA as well as the whole genome sequencing data analysis and visualization to address these challenges using an R Shiny application. MetaDAVis can perform six different types of analyses that include: i) Taxonomic abundance distribution; ii) Alpha and beta diversity analyses; iii) Dimension reduction tasks using PCA, t-SNE, and UMAP; iv) Correlation analysis using taxa- or sample-based data; v) Heatmap generation; and vi) Differential abundance analysis. MetaDAVis creates interactive and dynamic figures and tables from multiple methods enabling users to easily understand their data using different variables. Our program is user-friendly and easily customizable allowing those without any programming background to perform comprehensive data analyses using a standalone or web-based interface.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0319949"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0319949","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The human microbiome exerts tremendous influence on maintaining a balance between human health and disease. High-throughput sequencing has enabled the study of microbial communities at an unprecedented resolution. Generation of massive amounts of sequencing data has also presented novel challenges to analyzing and visualizing data to make biologically relevant interpretations. We have developed an interactive Metagenome Data Analysis and Visualization (MetaDAVis) tool for 16S rRNA as well as the whole genome sequencing data analysis and visualization to address these challenges using an R Shiny application. MetaDAVis can perform six different types of analyses that include: i) Taxonomic abundance distribution; ii) Alpha and beta diversity analyses; iii) Dimension reduction tasks using PCA, t-SNE, and UMAP; iv) Correlation analysis using taxa- or sample-based data; v) Heatmap generation; and vi) Differential abundance analysis. MetaDAVis creates interactive and dynamic figures and tables from multiple methods enabling users to easily understand their data using different variables. Our program is user-friendly and easily customizable allowing those without any programming background to perform comprehensive data analyses using a standalone or web-based interface.

MetaDAVis:用于元基因组数据分析和可视化的 R 应用程序。
人体微生物群对维持人体健康和疾病之间的平衡有着巨大的影响。高通量测序使微生物群落的研究以前所未有的分辨率。大量测序数据的产生也为分析和可视化数据以进行生物学相关解释提出了新的挑战。我们已经开发了一个交互式元基因组数据分析和可视化(MetaDAVis)工具,用于16S rRNA以及全基因组测序数据分析和可视化,以解决使用R Shiny应用程序的这些挑战。MetaDAVis可以执行六种不同类型的分析,包括:i)分类丰度分布;ii) Alpha和beta多样性分析;iii)使用PCA、t-SNE和UMAP的降维任务;iv)利用基于分类群或样本的数据进行相关性分析;v)热图生成;差异丰度分析。MetaDAVis通过多种方法创建交互式和动态的图形和表格,使用户能够使用不同的变量轻松理解他们的数据。我们的程序是用户友好的,易于定制,允许那些没有任何编程背景的人使用独立或基于web的界面执行全面的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信