Generalizability of AI-based image segmentation and centering estimation algorithm: a multi-region, multi-center, and multi-scanner study.

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Neal S Krishna, Emiliano Garza-Frias, Giridhar Dasegowda, Parisa Kaviani, Lina Karout, Roshan Fahimi, Bernardo Bizzo, Keith J Dreyer, Mannudeep K Kalra, Subba Digumarthy
{"title":"Generalizability of AI-based image segmentation and centering estimation algorithm: a multi-region, multi-center, and multi-scanner study.","authors":"Neal S Krishna, Emiliano Garza-Frias, Giridhar Dasegowda, Parisa Kaviani, Lina Karout, Roshan Fahimi, Bernardo Bizzo, Keith J Dreyer, Mannudeep K Kalra, Subba Digumarthy","doi":"10.1093/rpd/ncaf018","DOIUrl":null,"url":null,"abstract":"<p><p>We created and validated an open-access AI algorithm (AIc) for assessing image segmentation and patient centering in a multi-body-region, multi-center, and multi-scanner study. Our study included 825 head, chest, and abdomen-pelvis CT from 275 patients (153 females, 128 males; mean age 67 ± 14 years) scanned at five academic and community hospitals. CT images were processed with the AIc to determine vertical and horizontal centering at the skull base (head CT), carina (chest CT), and L2-L3 disc (abdomen CT). We manually measured the vertical and horizontal off-centering. We found strong correlations between AIc and manual estimate of off-centering in both the vertical (head, r = 0.93; chest, r = 0.94; abdomen, and r = 0.95) and horizontal directions (head CT, r = 0.85; chest, r = 0.85; abdomen, r = 0.8) and across age groups (r = 0.70-0.97), gender (r = 0.81-0.96), and multiple scanners from the five sites (r = 0.74-0.99). The AIc area under the receiver operating characteristic curve for centered and off-centered CT exams ranged from 0.72 (head) to 0.99 (chest). Therefore, our study showed that positron-emission tomography/CT (PET/CT) examinations commonly exhibit significant off-centering, particularly with vertical deviations often exceeding 30 mm and horizontal deviations between 10 and 30 mm. In addition, it demonstrated that our AI model can effectively assess both vertical and horizontal off-centering, although it performs better at estimating vertical off-centering.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncaf018","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We created and validated an open-access AI algorithm (AIc) for assessing image segmentation and patient centering in a multi-body-region, multi-center, and multi-scanner study. Our study included 825 head, chest, and abdomen-pelvis CT from 275 patients (153 females, 128 males; mean age 67 ± 14 years) scanned at five academic and community hospitals. CT images were processed with the AIc to determine vertical and horizontal centering at the skull base (head CT), carina (chest CT), and L2-L3 disc (abdomen CT). We manually measured the vertical and horizontal off-centering. We found strong correlations between AIc and manual estimate of off-centering in both the vertical (head, r = 0.93; chest, r = 0.94; abdomen, and r = 0.95) and horizontal directions (head CT, r = 0.85; chest, r = 0.85; abdomen, r = 0.8) and across age groups (r = 0.70-0.97), gender (r = 0.81-0.96), and multiple scanners from the five sites (r = 0.74-0.99). The AIc area under the receiver operating characteristic curve for centered and off-centered CT exams ranged from 0.72 (head) to 0.99 (chest). Therefore, our study showed that positron-emission tomography/CT (PET/CT) examinations commonly exhibit significant off-centering, particularly with vertical deviations often exceeding 30 mm and horizontal deviations between 10 and 30 mm. In addition, it demonstrated that our AI model can effectively assess both vertical and horizontal off-centering, although it performs better at estimating vertical off-centering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信