TPCs: FROM PLANT TO HUMAN.

IF 29.9 1区 医学 Q1 PHYSIOLOGY
Physiological reviews Pub Date : 2025-07-01 Epub Date: 2025-04-03 DOI:10.1152/physrev.00044.2024
Yvonne Eileen Klingl, Arnas Petrauskas, Dawid Jaślan, Christian Grimm
{"title":"TPCs: FROM PLANT TO HUMAN.","authors":"Yvonne Eileen Klingl, Arnas Petrauskas, Dawid Jaślan, Christian Grimm","doi":"10.1152/physrev.00044.2024","DOIUrl":null,"url":null,"abstract":"<p><p>In 2005, the <i>Arabidopsis thaliana</i> two-pore channel TPC1 channel was identified as a vacuolar Ca<sup>2+</sup>-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca<sup>2+</sup> release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na<sup>+</sup> channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P<sub>2</sub> mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca<sup>2+</sup> versus Na<sup>+</sup> in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1695-1732"},"PeriodicalIF":29.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00044.2024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In 2005, the Arabidopsis thaliana two-pore channel TPC1 channel was identified as a vacuolar Ca2+-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca2+ release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na+ channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P2 mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca2+ versus Na+ in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.

TPCs:从植物到人类。
2005年,拟南芥双孔通道TPC1通道被鉴定为液泡型Ca 2 +释放通道。2009年,三个独立的研究小组发表了关于哺乳动物TPCs作为naadp激活的内溶酶体Ca2+释放通道的研究,结果最终被另外两个小组质疑,声称哺乳动物TPCs是PI(3,5)P2激活的Na+通道。到目前为止,这场争论似乎已基本和解。TPC2的亲脂性小分子激动剂,模拟NAADP或PI(3,5)P2通道激活模式,揭示了TPC2可以以配体依赖的方式改变其对Ca2+和Na+的选择性(N-对p型激活)。此外,还发现了NAADP结合蛋白JPT2和Lsm12,证实了只有在这些辅助NAADP结合蛋白存在的情况下,TPCs的NAADP激活才能起作用。病理生理上,TPCs功能的丧失或获得会影响自噬、胞吐、内吞和细胞内运输,例如LDL胆固醇运输导致脂肪肝或病毒和细菌毒素运输,这证实了TPCs在埃博拉或covid - 19等传染病中的作用。EGFR和1-整合素的运输缺陷可能在癌症中起作用。在神经退行性溶酶体贮积病模型中,发现p型激活TPC2对Niemann- Pick病C1型、Batten病和黏液脂质病IV型的体外和体内特征都有有益的影响。在这里,我们介绍了这些通道的最新结构、功能、生理和病理生理学,首先关注植物,然后是哺乳动物的tpc,我们讨论了它们作为药物靶点的潜力,包括目前可用的药理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信