{"title":"Chemogenetic attenuation of PFC pyramidal neurons restores recognition memory deficits following adolescent NMDA receptor blockade","authors":"Hagar Bauminger , Sailendrakumar Kolatt Chandran , Hiba Zaidan , Irit Akirav , Inna Gaisler-Salomon","doi":"10.1016/j.pnpbp.2025.111359","DOIUrl":null,"url":null,"abstract":"<div><div>During adolescence, the prefrontal cortex (PFC) undergoes significant developmental changes, affecting the balance between excitatory glutamate and inhibitory GABA transmission (i.e., the E/I balance). This process is critical for intact cognitive function and social behavior in adulthood and is disrupted in schizophrenia (SZ). While acute NMDA receptor (NMDAr) blockade leads to excess glutamate transmission in the PFC, less is known about the long-term impacts of NMDAr blockade in adolescence on the E/I balance and adult cognitive function and social behavior. Here we show that early-adolescence chronic MK-801 administration leads to deficits in recognition memory and social function as well as increased E/I balance in the medial prefrontal cortex (mPFC) of adult male rats, stemming from reduced inhibitory synaptic transmission rather than changes in excitatory transmission or intrinsic excitability. Interestingly, chemogenetic attenuation of prelimbic mPFC pyramidal neurons reverses adolescent MK-801-induced deficits in recognition memory, but not social behavior. These findings emphasize the critical role of intact NMDAr function during adolescence on behavior in adulthood and on the E/I balance, and imply that reduced mPFC pyramidal neuron activity may hold therapeutic potential in treating recognition memory deficits in SZ.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"138 ","pages":"Article 111359"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625001137","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During adolescence, the prefrontal cortex (PFC) undergoes significant developmental changes, affecting the balance between excitatory glutamate and inhibitory GABA transmission (i.e., the E/I balance). This process is critical for intact cognitive function and social behavior in adulthood and is disrupted in schizophrenia (SZ). While acute NMDA receptor (NMDAr) blockade leads to excess glutamate transmission in the PFC, less is known about the long-term impacts of NMDAr blockade in adolescence on the E/I balance and adult cognitive function and social behavior. Here we show that early-adolescence chronic MK-801 administration leads to deficits in recognition memory and social function as well as increased E/I balance in the medial prefrontal cortex (mPFC) of adult male rats, stemming from reduced inhibitory synaptic transmission rather than changes in excitatory transmission or intrinsic excitability. Interestingly, chemogenetic attenuation of prelimbic mPFC pyramidal neurons reverses adolescent MK-801-induced deficits in recognition memory, but not social behavior. These findings emphasize the critical role of intact NMDAr function during adolescence on behavior in adulthood and on the E/I balance, and imply that reduced mPFC pyramidal neuron activity may hold therapeutic potential in treating recognition memory deficits in SZ.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.