Bettina Semler , Karin Binder , Doris Ribitsch , Alessandro Pellis , Georg M. Guebitz
{"title":"Screening assay for polyester hydrolyzing microorganisms using fluorescence-labeled poly(butylene adipate)","authors":"Bettina Semler , Karin Binder , Doris Ribitsch , Alessandro Pellis , Georg M. Guebitz","doi":"10.1016/j.nbt.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Despite recent advances, there is still a demand for more efficient enzymes hydrolyzing synthetic polymers. Automated high throughput screening strategies of microorganisms from different environments could yield novel enzymes but require specific methods for detection of polymer hydrolysis in complex matrices. Here, 5-carboxy-fluorescein (5-FAM) was covalently coupled to poly(butylene adipate) (PBA) and blended at 1 %, 5 % and 10 % w/w concentrations with non-labeled PBA. Hydrolysis of PBA by the Thc_Cut1 cutinase from <em>Thermobifida cellulosilytica</em> was confirmed via quantification of the released monomers 1,4-butanediol and adipic acid, weight loss and FTIR analysis. Upon incubation with Thc_Cut1, hydrolysis of all three fluorescent labeled PBA blends lead to a clear fluorescence increase of up to 4000 RFU while no signal change was detected for the blank and for heat-inactivated enzyme (signal below 500 RFU). In a next step, as a model organism <em>Pichia pastoris</em> expressing the identical cutinase was cultivated in the presences of labeled PBA. Despite the complex matrix, a fluorescence increase of up to 500 RFU was observed for <em>P. pastoris</em> expressing the enzyme while no significant signal change was seen for the control strain (lacking Thc_Cut1 expression). Likewise, extracellular enzymes from the fungi <em>Fusarium solani</em> and <em>Alternaria alternata</em> hydrolyzed labeled PBA leading to fluorescence increases of 1328 and 1187 RFU. This indicates that 5-FAM covalently coupled to polymers could be used for development of simple and high throughput screening platforms to identify polymer decomposing microorganisms and enzymes.</div></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"88 ","pages":"Pages 39-45"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187167842500038X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite recent advances, there is still a demand for more efficient enzymes hydrolyzing synthetic polymers. Automated high throughput screening strategies of microorganisms from different environments could yield novel enzymes but require specific methods for detection of polymer hydrolysis in complex matrices. Here, 5-carboxy-fluorescein (5-FAM) was covalently coupled to poly(butylene adipate) (PBA) and blended at 1 %, 5 % and 10 % w/w concentrations with non-labeled PBA. Hydrolysis of PBA by the Thc_Cut1 cutinase from Thermobifida cellulosilytica was confirmed via quantification of the released monomers 1,4-butanediol and adipic acid, weight loss and FTIR analysis. Upon incubation with Thc_Cut1, hydrolysis of all three fluorescent labeled PBA blends lead to a clear fluorescence increase of up to 4000 RFU while no signal change was detected for the blank and for heat-inactivated enzyme (signal below 500 RFU). In a next step, as a model organism Pichia pastoris expressing the identical cutinase was cultivated in the presences of labeled PBA. Despite the complex matrix, a fluorescence increase of up to 500 RFU was observed for P. pastoris expressing the enzyme while no significant signal change was seen for the control strain (lacking Thc_Cut1 expression). Likewise, extracellular enzymes from the fungi Fusarium solani and Alternaria alternata hydrolyzed labeled PBA leading to fluorescence increases of 1328 and 1187 RFU. This indicates that 5-FAM covalently coupled to polymers could be used for development of simple and high throughput screening platforms to identify polymer decomposing microorganisms and enzymes.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.