Wiku Andonotopo, Muhammad Adrianes Bachnas, Muhammad Ilham Aldika Akbar, Muhammad Alamsyah Aziz, Julian Dewantiningrum, Mochammad Besari Adi Pramono, Sri Sulistyowati, Milan Stanojevic, Asim Kurjak
{"title":"Fetal origins of adult disease: transforming prenatal care by integrating Barker's Hypothesis with AI-driven 4D ultrasound.","authors":"Wiku Andonotopo, Muhammad Adrianes Bachnas, Muhammad Ilham Aldika Akbar, Muhammad Alamsyah Aziz, Julian Dewantiningrum, Mochammad Besari Adi Pramono, Sri Sulistyowati, Milan Stanojevic, Asim Kurjak","doi":"10.1515/jpm-2024-0617","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The fetal origins of adult disease, widely known as Barker's Hypothesis, suggest that adverse fetal environments significantly impact the risk of developing chronic diseases, such as diabetes and cardiovascular conditions, in adulthood. Recent advancements in 4D ultrasound (4D US) and artificial intelligence (AI) technologies offer a promising avenue for improving prenatal diagnostics and validating this hypothesis. These innovations provide detailed insights into fetal behavior and neurodevelopment, linking early developmental markers to long-term health outcomes.</p><p><strong>Content: </strong>This study synthesizes contemporary developments in AI-enhanced 4D US, focusing on their roles in detecting fetal anomalies, assessing neurodevelopmental markers, and evaluating congenital heart defects. The integration of AI with 4D US allows for real-time, high-resolution visualization of fetal anatomy and behavior, surpassing the diagnostic precision of traditional methods. Despite these advancements, challenges such as algorithmic bias, data diversity, and real-world validation persist and require further exploration.</p><p><strong>Summary: </strong>Findings demonstrate that AI-driven 4D US improves diagnostic sensitivity and accuracy, enabling earlier detection of fetal abnormalities and optimization of clinical workflows. By providing a more comprehensive understanding of fetal programming, these technologies substantiate the links between early-life conditions and adult health outcomes, as proposed by Barker's Hypothesis.</p><p><strong>Outlook: </strong>The integration of AI and 4D US has the potential to revolutionize prenatal care, paving the way for personalized maternal-fetal healthcare. Future research should focus on addressing current limitations, including ethical concerns and accessibility challenges, to promote equitable implementation. Such advancements could significantly reduce the global burden of chronic diseases and foster healthier generations.</p>","PeriodicalId":16704,"journal":{"name":"Journal of Perinatal Medicine","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Perinatal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jpm-2024-0617","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The fetal origins of adult disease, widely known as Barker's Hypothesis, suggest that adverse fetal environments significantly impact the risk of developing chronic diseases, such as diabetes and cardiovascular conditions, in adulthood. Recent advancements in 4D ultrasound (4D US) and artificial intelligence (AI) technologies offer a promising avenue for improving prenatal diagnostics and validating this hypothesis. These innovations provide detailed insights into fetal behavior and neurodevelopment, linking early developmental markers to long-term health outcomes.
Content: This study synthesizes contemporary developments in AI-enhanced 4D US, focusing on their roles in detecting fetal anomalies, assessing neurodevelopmental markers, and evaluating congenital heart defects. The integration of AI with 4D US allows for real-time, high-resolution visualization of fetal anatomy and behavior, surpassing the diagnostic precision of traditional methods. Despite these advancements, challenges such as algorithmic bias, data diversity, and real-world validation persist and require further exploration.
Summary: Findings demonstrate that AI-driven 4D US improves diagnostic sensitivity and accuracy, enabling earlier detection of fetal abnormalities and optimization of clinical workflows. By providing a more comprehensive understanding of fetal programming, these technologies substantiate the links between early-life conditions and adult health outcomes, as proposed by Barker's Hypothesis.
Outlook: The integration of AI and 4D US has the potential to revolutionize prenatal care, paving the way for personalized maternal-fetal healthcare. Future research should focus on addressing current limitations, including ethical concerns and accessibility challenges, to promote equitable implementation. Such advancements could significantly reduce the global burden of chronic diseases and foster healthier generations.
期刊介绍:
The Journal of Perinatal Medicine (JPM) is a truly international forum covering the entire field of perinatal medicine. It is an essential news source for all those obstetricians, neonatologists, perinatologists and allied health professionals who wish to keep abreast of progress in perinatal and related research. Ahead-of-print publishing ensures fastest possible knowledge transfer. The Journal provides statements on themes of topical interest as well as information and different views on controversial topics. It also informs about the academic, organisational and political aims and objectives of the World Association of Perinatal Medicine.