Alexandra R Yesian, Mayer M Chalom, Nelson H Knudsen, Alec L Hyde, Jean Personnaz, Hyunjii Cho, Yae-Huei Liou, Kyle A Starost, Chia-Wei Lee, Dong-Yan Tsai, Hsing-Wei Ho, Jr-Shiuan Lin, Jun Li, Frank B Hu, Alexander S Banks, Chih-Hao Lee
{"title":"Preadipocyte IL-13/IL-13Rα1 signaling regulates beige adipogenesis through modulation of PPARγ activity.","authors":"Alexandra R Yesian, Mayer M Chalom, Nelson H Knudsen, Alec L Hyde, Jean Personnaz, Hyunjii Cho, Yae-Huei Liou, Kyle A Starost, Chia-Wei Lee, Dong-Yan Tsai, Hsing-Wei Ho, Jr-Shiuan Lin, Jun Li, Frank B Hu, Alexander S Banks, Chih-Hao Lee","doi":"10.1172/JCI169152","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 innate lymphoid cells (ILC2) regulate the proliferation of preadipocytes that give rise to beige adipocytes. Whether and how ILC2 downstream Th2 cytokines control beige adipogenesis remain unclear. We employed cell systems and genetic models to examine the mechanism through which interleukin-13 (IL-13), an ILC2-derived Th2 cytokine, controls beige adipocyte differentiation. IL-13 priming in preadipocytes drives beige adipogenesis by upregulating beige-promoting metabolic programs, including mitochondrial oxidative metabolism and PPARγ-related pathways. The latter is mediated by increased expression and activity of PPARγ through IL-13 receptor α1 (IL-13Rα1) downstream effectors, STAT6 and p38 MAPK, respectively. Il13 knockout (Il13KO) or preadipocyte Il13ra1 knockout (Il13ra1KO) mice are refractory to cold- or β-3 adrenergic agonist-induced beiging in inguinal white adipose tissue, whereas Il4 knockout mice show no defects in beige adipogenesis. Il13KO and Il13ra1KO mouse models exhibit increased body weight/fat mass and dysregulated glucose metabolism but have a mild cold intolerant phenotype, likely due to their intact brown adipocyte recruitment. We also find that genetic variants of human IL13RA1 are associated with body mass index and type 2 diabetes. These results suggest that IL-13 signaling-regulated beige adipocyte function may play a predominant role in modulating metabolic homeostasis rather than in thermoregulation.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI169152","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 innate lymphoid cells (ILC2) regulate the proliferation of preadipocytes that give rise to beige adipocytes. Whether and how ILC2 downstream Th2 cytokines control beige adipogenesis remain unclear. We employed cell systems and genetic models to examine the mechanism through which interleukin-13 (IL-13), an ILC2-derived Th2 cytokine, controls beige adipocyte differentiation. IL-13 priming in preadipocytes drives beige adipogenesis by upregulating beige-promoting metabolic programs, including mitochondrial oxidative metabolism and PPARγ-related pathways. The latter is mediated by increased expression and activity of PPARγ through IL-13 receptor α1 (IL-13Rα1) downstream effectors, STAT6 and p38 MAPK, respectively. Il13 knockout (Il13KO) or preadipocyte Il13ra1 knockout (Il13ra1KO) mice are refractory to cold- or β-3 adrenergic agonist-induced beiging in inguinal white adipose tissue, whereas Il4 knockout mice show no defects in beige adipogenesis. Il13KO and Il13ra1KO mouse models exhibit increased body weight/fat mass and dysregulated glucose metabolism but have a mild cold intolerant phenotype, likely due to their intact brown adipocyte recruitment. We also find that genetic variants of human IL13RA1 are associated with body mass index and type 2 diabetes. These results suggest that IL-13 signaling-regulated beige adipocyte function may play a predominant role in modulating metabolic homeostasis rather than in thermoregulation.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.