HINT1 aggravates aortic aneurysm by targeting ITGA6/FAK axis in vascular smooth muscle cells.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Journal of Clinical Investigation Pub Date : 2025-04-08 eCollection Date: 2025-06-02 DOI:10.1172/JCI186628
Yan Zhang, Wencheng Wu, Xuehui Yang, Shanshan Luo, Xiaoqian Wang, Qiang Da, Ke Yan, Lulu Hu, Shixiu Sun, Xiaolong Du, Xiaoqiang Li, Zhijian Han, Feng Chen, Aihua Gu, Liansheng Wang, Zhiren Zhang, Bo Yu, Chenghui Yan, Yaling Han, Yi Han, Liping Xie, Yong Ji
{"title":"HINT1 aggravates aortic aneurysm by targeting ITGA6/FAK axis in vascular smooth muscle cells.","authors":"Yan Zhang, Wencheng Wu, Xuehui Yang, Shanshan Luo, Xiaoqian Wang, Qiang Da, Ke Yan, Lulu Hu, Shixiu Sun, Xiaolong Du, Xiaoqiang Li, Zhijian Han, Feng Chen, Aihua Gu, Liansheng Wang, Zhiren Zhang, Bo Yu, Chenghui Yan, Yaling Han, Yi Han, Liping Xie, Yong Ji","doi":"10.1172/JCI186628","DOIUrl":null,"url":null,"abstract":"<p><p>Aortic aneurysm is a high-risk cardiovascular disease without an effective cure. Vascular smooth muscle cell (VSMC) phenotypic switching is a key step in the pathogenesis of aortic aneurysm. Here, we revealed the role of histidine triad nucleotide-binding protein 1 (HINT1) in aortic aneurysm. HINT1 was upregulated both in aortic tissue from patients with aortic aneurysm and angiotensin II-induced aortic aneurysm mice. VSMC-specific HINT1 deletion alleviated aortic aneurysm via preventing VSMC phenotypic switching. With the stimulation of pathological factors, the increased nuclear translocation of HINT1 mediated by nucleoporin 98 promoted the interaction between HINT1 and transcription factor AP-2 α (TFAP2A), further triggered the transcription of integrin α6 (ITGA6) mediated by TFAP2A, and consequently activated the downstream focal adhesion kinase (FAK)/STAT3 signal pathway, leading to aggravation of VSMC phenotypic switching and aortic aneurysm. Importantly, defactinib treatment was demonstrated to limit aortic aneurysm development by inhibiting the FAK signal pathway. Thus, the HINT1/ITGA6/FAK axis emerges as a potential therapeutic strategy in aortic aneurysm.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI186628","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aortic aneurysm is a high-risk cardiovascular disease without an effective cure. Vascular smooth muscle cell (VSMC) phenotypic switching is a key step in the pathogenesis of aortic aneurysm. Here, we revealed the role of histidine triad nucleotide-binding protein 1 (HINT1) in aortic aneurysm. HINT1 was upregulated both in aortic tissue from patients with aortic aneurysm and angiotensin II-induced aortic aneurysm mice. VSMC-specific HINT1 deletion alleviated aortic aneurysm via preventing VSMC phenotypic switching. With the stimulation of pathological factors, the increased nuclear translocation of HINT1 mediated by nucleoporin 98 promoted the interaction between HINT1 and transcription factor AP-2 α (TFAP2A), further triggered the transcription of integrin α6 (ITGA6) mediated by TFAP2A, and consequently activated the downstream focal adhesion kinase (FAK)/STAT3 signal pathway, leading to aggravation of VSMC phenotypic switching and aortic aneurysm. Importantly, defactinib treatment was demonstrated to limit aortic aneurysm development by inhibiting the FAK signal pathway. Thus, the HINT1/ITGA6/FAK axis emerges as a potential therapeutic strategy in aortic aneurysm.

HINT1通过靶向血管平滑肌细胞中的ITGA6/FAK轴加重主动脉瘤。
主动脉瘤是一种没有有效治疗方法的高危心血管疾病。血管平滑肌细胞(VSMC)表型转换是动脉瘤发病的关键步骤。在这里,我们揭示了组氨酸三核苷酸结合蛋白1 (HINT1)在主动脉瘤中的作用。在主动脉瘤患者和angii诱导的主动脉瘤小鼠的主动脉组织中,HINT1均表达上调。VSMC特异性HINT1缺失通过阻止VSMC表型转换减轻了主动脉瘤。在病理因素的刺激下,核孔蛋白98 (Nup98)介导的HINT1核易位增加,促进了HINT1与转录因子AP-2 α (TFAP2A)的相互作用,进一步触发了TFAP2A介导的整合素α 6 (ITGA6)的转录,进而激活下游局灶黏着激酶(FAK)/STAT3信号通路,导致VSMC表型转换和主动脉瘤加重。重要的是,Defactinib治疗被证明通过抑制FAK信号通路来限制主动脉瘤的发展。因此,HINT1/ITGA6/FAK轴成为主动脉瘤的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信