{"title":"Prediction of new-onset migraine using clinical-genotypic data from the HUNT Study: a machine learning analysis.","authors":"Fahim Faisal, Antonios Danelakis, Marte-Helene Bjørk, Bendik Winsvold, Manjit Matharu, Parashkev Nachev, Knut Hagen, Erling Tronvik, Anker Stubberud","doi":"10.1186/s10194-025-02014-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Migraine is associated with a range of symptoms and comorbid disorders and has a strong genetic basis, but the currently identified risk loci only explain a small portion of the heritability, often termed the \"missing heritability\". We aimed to investigate if machine learning could exploit the combination of genetic data and general clinical features to identify individuals at risk for new-onset migraine.</p><p><strong>Method: </strong>This study was a population-based cohort study of adults from the second and third Trøndelag Health Study (HUNT2 and HUNT3). Migraine was captured in a validated questionnaire and based on modified criteria of the International Classification of Headache Disorders (ICHD) and participants underwent genome-wide genotyping. The primary outcome was new-onset migraine defined as a change in disease status from headache-free in HUNT2 to migraine in HUNT3. The migraine risk variants identified in the largest GWAS meta-analysis of migraine were used to identify genetic input features for the models. The general clinical features included demographics, selected comorbidities, medication and stimulant use and non-headache symptoms as predictive factors. Several standard machine learning architectures were constructed, trained, optimized and scored with area under the receiver operating characteristics curve (AUC). The best model during training and validation was used on unseen test sets. Different methods for model explainability were employed.</p><p><strong>Results: </strong>A total of 12,995 individuals were included in the predictive modelling (491 new-onset cases). A total of 108 genetic variants and 67 general clinical variables were included in the models. The top performing decision-tree classifier achieved a test set AUC of 0.56 when using only genotypic data, 0.68 when using only clinical data and 0.72 when using both genetic and clinical data. Combining the genotype only and clinical data only models resulted in a lower predictivity with an AUC of 0.67. The most important clinical features were age, marital status and work situation as well as several genetic variants.</p><p><strong>Conclusion: </strong>The combination of genotype and routine demographic and non-headache clinical data correctly predict the new onset of migraine in approximately 2 out of 3 cases, supporting that there are important genotypic-phenotypic interactions partaking in the new-onset of migraine.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"26 1","pages":"70"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-025-02014-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Migraine is associated with a range of symptoms and comorbid disorders and has a strong genetic basis, but the currently identified risk loci only explain a small portion of the heritability, often termed the "missing heritability". We aimed to investigate if machine learning could exploit the combination of genetic data and general clinical features to identify individuals at risk for new-onset migraine.
Method: This study was a population-based cohort study of adults from the second and third Trøndelag Health Study (HUNT2 and HUNT3). Migraine was captured in a validated questionnaire and based on modified criteria of the International Classification of Headache Disorders (ICHD) and participants underwent genome-wide genotyping. The primary outcome was new-onset migraine defined as a change in disease status from headache-free in HUNT2 to migraine in HUNT3. The migraine risk variants identified in the largest GWAS meta-analysis of migraine were used to identify genetic input features for the models. The general clinical features included demographics, selected comorbidities, medication and stimulant use and non-headache symptoms as predictive factors. Several standard machine learning architectures were constructed, trained, optimized and scored with area under the receiver operating characteristics curve (AUC). The best model during training and validation was used on unseen test sets. Different methods for model explainability were employed.
Results: A total of 12,995 individuals were included in the predictive modelling (491 new-onset cases). A total of 108 genetic variants and 67 general clinical variables were included in the models. The top performing decision-tree classifier achieved a test set AUC of 0.56 when using only genotypic data, 0.68 when using only clinical data and 0.72 when using both genetic and clinical data. Combining the genotype only and clinical data only models resulted in a lower predictivity with an AUC of 0.67. The most important clinical features were age, marital status and work situation as well as several genetic variants.
Conclusion: The combination of genotype and routine demographic and non-headache clinical data correctly predict the new onset of migraine in approximately 2 out of 3 cases, supporting that there are important genotypic-phenotypic interactions partaking in the new-onset of migraine.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.