Sirong Wu, Yuhui Deng, Junjie Liu, Xi Luo, Gengchen Sun
{"title":"Rumor detection on social networks based on Temporal Tree Transformer.","authors":"Sirong Wu, Yuhui Deng, Junjie Liu, Xi Luo, Gengchen Sun","doi":"10.1371/journal.pone.0320333","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid propagation of rumors on social media can give rise to various social issues, underscoring the necessity of swift and automated rumor detection. Existing studies typically identify rumors based on their textual or static propagation structural information, without considering the dynamic changes in the structure of rumor propagation over time. In this paper, we propose the Temporal Tree Transformer model, which simultaneously considers text, propagation structure, and temporal changes. By analyzing observing the growth of propagation tree structures in different time windows, we use Gated Recurrent Unit (GRU) to encode these trees to obtain better representations for the classification task. We evaluate our model's performance using the PHEME dataset. In most existing studies, information leakage occurs when conversation threads from all events are randomly divided into training and test sets. We perform Leave-One-Event-Out (LOEO) cross-validation, which better reflects real-world scenarios. The experimental results show that our model achieves state-of-the-art accuracy 75.84% and Macro F1 score of 71.98%, respectively. These results demonstrate that extracting temporal features from propagation structures leads to improved model generalization.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0320333"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320333","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid propagation of rumors on social media can give rise to various social issues, underscoring the necessity of swift and automated rumor detection. Existing studies typically identify rumors based on their textual or static propagation structural information, without considering the dynamic changes in the structure of rumor propagation over time. In this paper, we propose the Temporal Tree Transformer model, which simultaneously considers text, propagation structure, and temporal changes. By analyzing observing the growth of propagation tree structures in different time windows, we use Gated Recurrent Unit (GRU) to encode these trees to obtain better representations for the classification task. We evaluate our model's performance using the PHEME dataset. In most existing studies, information leakage occurs when conversation threads from all events are randomly divided into training and test sets. We perform Leave-One-Event-Out (LOEO) cross-validation, which better reflects real-world scenarios. The experimental results show that our model achieves state-of-the-art accuracy 75.84% and Macro F1 score of 71.98%, respectively. These results demonstrate that extracting temporal features from propagation structures leads to improved model generalization.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage