Rumor detection on social networks based on Temporal Tree Transformer.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-04-07 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0320333
Sirong Wu, Yuhui Deng, Junjie Liu, Xi Luo, Gengchen Sun
{"title":"Rumor detection on social networks based on Temporal Tree Transformer.","authors":"Sirong Wu, Yuhui Deng, Junjie Liu, Xi Luo, Gengchen Sun","doi":"10.1371/journal.pone.0320333","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid propagation of rumors on social media can give rise to various social issues, underscoring the necessity of swift and automated rumor detection. Existing studies typically identify rumors based on their textual or static propagation structural information, without considering the dynamic changes in the structure of rumor propagation over time. In this paper, we propose the Temporal Tree Transformer model, which simultaneously considers text, propagation structure, and temporal changes. By analyzing observing the growth of propagation tree structures in different time windows, we use Gated Recurrent Unit (GRU) to encode these trees to obtain better representations for the classification task. We evaluate our model's performance using the PHEME dataset. In most existing studies, information leakage occurs when conversation threads from all events are randomly divided into training and test sets. We perform Leave-One-Event-Out (LOEO) cross-validation, which better reflects real-world scenarios. The experimental results show that our model achieves state-of-the-art accuracy 75.84% and Macro F1 score of 71.98%, respectively. These results demonstrate that extracting temporal features from propagation structures leads to improved model generalization.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0320333"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320333","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid propagation of rumors on social media can give rise to various social issues, underscoring the necessity of swift and automated rumor detection. Existing studies typically identify rumors based on their textual or static propagation structural information, without considering the dynamic changes in the structure of rumor propagation over time. In this paper, we propose the Temporal Tree Transformer model, which simultaneously considers text, propagation structure, and temporal changes. By analyzing observing the growth of propagation tree structures in different time windows, we use Gated Recurrent Unit (GRU) to encode these trees to obtain better representations for the classification task. We evaluate our model's performance using the PHEME dataset. In most existing studies, information leakage occurs when conversation threads from all events are randomly divided into training and test sets. We perform Leave-One-Event-Out (LOEO) cross-validation, which better reflects real-world scenarios. The experimental results show that our model achieves state-of-the-art accuracy 75.84% and Macro F1 score of 71.98%, respectively. These results demonstrate that extracting temporal features from propagation structures leads to improved model generalization.

基于时间树转换器的社交网络谣言检测。
谣言在社交媒体上的快速传播会引发各种社会问题,这凸显了快速、自动化的谣言检测的必要性。现有的研究通常基于谣言的文本或静态传播结构信息来识别谣言,而没有考虑谣言传播结构随时间的动态变化。本文提出了时间树转换模型,该模型同时考虑了文本、传播结构和时间变化。通过分析观察传播树结构在不同时间窗内的生长情况,我们使用门控循环单元(GRU)对这些树进行编码,以获得更好的分类任务表示。我们使用PHEME数据集评估模型的性能。在现有的大多数研究中,当将所有事件的会话线程随机划分到训练集和测试集时,就会发生信息泄漏。我们执行Leave-One-Event-Out (LOEO)交叉验证,这更好地反映了现实世界的场景。实验结果表明,该模型的准确率为75.84%,Macro F1得分为71.98%。这些结果表明,从传播结构中提取时间特征可以提高模型的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信