The zona incerta negatively regulates the red nucleus during movement cued by sound signals.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-04-07 eCollection Date: 2025-04-01 DOI:10.1371/journal.pbio.3003092
Liang Chen, Xinxing Wang, Hanxiao Liu, Chenzhao He, Allen P F Chen, Lu Chen, Thomas A Kim, Qiaojie Xiong
{"title":"The zona incerta negatively regulates the red nucleus during movement cued by sound signals.","authors":"Liang Chen, Xinxing Wang, Hanxiao Liu, Chenzhao He, Allen P F Chen, Lu Chen, Thomas A Kim, Qiaojie Xiong","doi":"10.1371/journal.pbio.3003092","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory signal-cued behaviors rely on a sophisticated neural network. While extensive research has focused on auditory processing and decision-making, the neural circuits governing motor coordination for goal-directed actions remain poorly understood. The red nucleus (RN) is essential for motor coordination, whereas the zona incerta (ZI) plays a key role in modulating sensorimotor circuits. Using tetrode recordings and optogenetics, we investigated the ZI-RN circuit's role in an auditory-cued decision task. RN neurons were preferentially activated when mice moved to the contralateral port for a reward, and optogenetic activation biased choices toward the contralateral side. Notably, parvalbumin-positive ZI neurons projected to the RN and negatively regulated movement coordination. These findings reveal an inhibitory ZI-RN circuit that shapes auditory-cued, goal-directed movement.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003092"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003092","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Auditory signal-cued behaviors rely on a sophisticated neural network. While extensive research has focused on auditory processing and decision-making, the neural circuits governing motor coordination for goal-directed actions remain poorly understood. The red nucleus (RN) is essential for motor coordination, whereas the zona incerta (ZI) plays a key role in modulating sensorimotor circuits. Using tetrode recordings and optogenetics, we investigated the ZI-RN circuit's role in an auditory-cued decision task. RN neurons were preferentially activated when mice moved to the contralateral port for a reward, and optogenetic activation biased choices toward the contralateral side. Notably, parvalbumin-positive ZI neurons projected to the RN and negatively regulated movement coordination. These findings reveal an inhibitory ZI-RN circuit that shapes auditory-cued, goal-directed movement.

在声音信号提示的运动过程中,隐区负向调节红核。
听觉信号提示的行为依赖于复杂的神经网络。虽然广泛的研究集中在听觉处理和决策上,但控制目标导向行动的运动协调的神经回路仍然知之甚少。红核(RN)对运动协调至关重要,而惯性带(ZI)在调节感觉运动回路中起关键作用。利用四极电极记录和光遗传学,我们研究了ZI-RN电路在听觉提示决策任务中的作用。当小鼠移动到对侧端口以获得奖励时,RN神经元优先被激活,并且光遗传激活偏向于选择对侧。值得注意的是,细小蛋白阳性的ZI神经元投射到RN并负调控运动协调。这些发现揭示了一种抑制性ZI-RN回路,它塑造了听觉提示的、目标导向的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信