ICOS+CD4+ T cells define a high susceptibility to anti-PD-1 therapy-induced lung pathogenesis.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
JCI insight Pub Date : 2025-04-08 eCollection Date: 2025-05-22 DOI:10.1172/jci.insight.186483
Mari Yokoi, Kosaku Murakami, Tomonori Yaguchi, Kenji Chamoto, Hiroaki Ozasa, Hironori Yoshida, Mirei Shirakashi, Katsuhiro Ito, Yoshihiro Komohara, Yukio Fujiwara, Hiromu Yano, Tatsuya Ogimoto, Daiki Hira, Tomohiro Terada, Toyohiro Hirai, Hirotake Tsukamoto
{"title":"ICOS+CD4+ T cells define a high susceptibility to anti-PD-1 therapy-induced lung pathogenesis.","authors":"Mari Yokoi, Kosaku Murakami, Tomonori Yaguchi, Kenji Chamoto, Hiroaki Ozasa, Hironori Yoshida, Mirei Shirakashi, Katsuhiro Ito, Yoshihiro Komohara, Yukio Fujiwara, Hiromu Yano, Tatsuya Ogimoto, Daiki Hira, Tomohiro Terada, Toyohiro Hirai, Hirotake Tsukamoto","doi":"10.1172/jci.insight.186483","DOIUrl":null,"url":null,"abstract":"<p><p>Managing immune-related adverse events (irAEs) caused by cancer immunotherapy is essential for developing effective and safer therapies. However, cellular mechanism(s) underlying organ toxicity during anti-PD-(L)1 therapy remain unclear. Here, we investigated the effect of chronological aging on anti-PD-(L)1 therapy-induced irAE-like lung toxicity, utilizing tumor-bearing aged mice. Anti-PD-(L)1 therapy facilitated ectopic infiltration of T and B cells, and antibody deposition in lungs of aged but not young mice. Adoptive transfer of aged lung-derived CD4+ T cells into TCR-deficient mice revealed that both pathogenic CD4+ T cells and an aged host environment were necessary for the irAE-inducible responses. Single-cell transcriptomics of lung-infiltrating cells in aged mice demonstrated that anti-PD-(L)1 therapy elicited ICOS+CD4+ T cell activation. Disruption of the ICOS-ICOSL interaction attenuated germinal center B cell differentiation and subsequent lung damage, which were overcome by local administration of IL-21 in the lungs of anti-PD-1 therapy-treated aged mice. Therefore, ICOS+CD4+ T cells elicited under an aged environment exacerbated aberrant immune responses and the subsequent lung dysfunction. Consistent with the findings from the mouse model, ICOS upregulation in CD4+ T cells was associated with later irAE incidence in patients with cancer. These finding will help development of useful strategies for irAE management in patients with cancer, many of whom are elderly.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.186483","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Managing immune-related adverse events (irAEs) caused by cancer immunotherapy is essential for developing effective and safer therapies. However, cellular mechanism(s) underlying organ toxicity during anti-PD-(L)1 therapy remain unclear. Here, we investigated the effect of chronological aging on anti-PD-(L)1 therapy-induced irAE-like lung toxicity, utilizing tumor-bearing aged mice. Anti-PD-(L)1 therapy facilitated ectopic infiltration of T and B cells, and antibody deposition in lungs of aged but not young mice. Adoptive transfer of aged lung-derived CD4+ T cells into TCR-deficient mice revealed that both pathogenic CD4+ T cells and an aged host environment were necessary for the irAE-inducible responses. Single-cell transcriptomics of lung-infiltrating cells in aged mice demonstrated that anti-PD-(L)1 therapy elicited ICOS+CD4+ T cell activation. Disruption of the ICOS-ICOSL interaction attenuated germinal center B cell differentiation and subsequent lung damage, which were overcome by local administration of IL-21 in the lungs of anti-PD-1 therapy-treated aged mice. Therefore, ICOS+CD4+ T cells elicited under an aged environment exacerbated aberrant immune responses and the subsequent lung dysfunction. Consistent with the findings from the mouse model, ICOS upregulation in CD4+ T cells was associated with later irAE incidence in patients with cancer. These finding will help development of useful strategies for irAE management in patients with cancer, many of whom are elderly.

ICOS+CD4 T细胞对抗pd -1治疗诱导的肺部发病机制具有高度易感性。
管理由癌症免疫治疗引起的免疫相关不良事件(irAEs)对于开发有效和更安全的治疗方法至关重要。然而,抗pd -(L)1治疗过程中器官毒性的细胞机制尚不清楚。在这里,我们研究了时间衰老对抗pd -(L)1治疗诱导的ira样肺毒性的影响,利用荷瘤老年小鼠。抗pd -(L)1治疗可促进老年小鼠肺T细胞和B细胞异位浸润和抗体沉积。将衰老的肺源性CD4 T细胞过继转移到tcr缺陷小鼠中,发现致病性CD4 T细胞和衰老的宿主环境对于irae诱导的应答都是必要的。老年小鼠肺浸润细胞的单细胞转录组学表明,抗pd -(L)1治疗可诱导ICOS+CD4 t细胞活化。ICOS-ICOSL相互作用的破坏减弱了生发中心b细胞分化和随后的肺损伤,这可以通过在抗pd -1治疗的老年小鼠肺中局部给予IL-21来克服。因此,在老年环境下引发的ICOS+CD4 T细胞加剧了异常免疫反应和随后的肺功能障碍。与小鼠模型研究结果一致,CD4 T细胞ICOS上调与癌症患者晚期irAE发病率相关。这些发现将有助于为癌症患者(其中许多是老年人)制定有效的irAE管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信