Glenn Belinsky, Jiapeng Ruan, Nima Fattahi, Sameet Mehta, Chandra Sekhar Boddupalli, Pramod K Mistry, Shiny Nair
{"title":"Modeling bone marrow microenvironment and hematopoietic dysregulation in Gaucher disease through VavCre mediated Gba deletion.","authors":"Glenn Belinsky, Jiapeng Ruan, Nima Fattahi, Sameet Mehta, Chandra Sekhar Boddupalli, Pramod K Mistry, Shiny Nair","doi":"10.1093/hmg/ddaf045","DOIUrl":null,"url":null,"abstract":"<p><p>Biallelic mutations in Gba cause Gaucher disease (GD), a lysosomal disorder characterized by deficient glucocerebrosidase activity and the accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), primarily in macrophages. Beyond macrophages, GD pathology affects additional hematopoietic lineages, contributing to immune dysregulation. Existing Mx1-Cre Gba knockout models require induction protocols that lead to gene deletion outside hematopoietic cells, limiting the study of hematopoietic-specific effects. To overcome these limitations, we generated a hematopoietic-specific Gba knockout model by crossing Gbafl/fl mice with Vav-Cre, enabling early deletion of Gba exons 8-11 in hematopoietic stem and progenitor cells. These mice were backcrossed to 129X1/SvJ and C57BL/6 J backgrounds, revealing that genetic background significantly influences disease severity. Efficient Gba excision was confirmed in bone marrow, spleen, and thymus, with minimal recombination in the liver. In VavCre 129 GD mice, glucocerebrosidase activity in the spleen was severely reduced, leading to GlcCer and GlcSph accumulation and Gaucher cell infiltration in the spleen and femurs. Transcriptomic analysis identified upregulation of inflammatory and lysosomal pathways. Immune cell deconvolution from RNA-seq data further revealed an expansion of monocytes, dendritic cells, and pro-inflammatory macrophage subsets, suggesting an altered immune landscape. Additionally, GPNMB, a potential GD biomarker, was significantly elevated in both spleens and sera of VavCre 129 GD mice. This hematopoietic-specific GD model provides a powerful platform for studying GD pathophysiology, modifier genes, and immune dysregulation. It offers new opportunities for biomarker discovery and for developing strategies targeting hematopoietic and immune mechanisms in GD and related lysosomal storage disorders.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biallelic mutations in Gba cause Gaucher disease (GD), a lysosomal disorder characterized by deficient glucocerebrosidase activity and the accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), primarily in macrophages. Beyond macrophages, GD pathology affects additional hematopoietic lineages, contributing to immune dysregulation. Existing Mx1-Cre Gba knockout models require induction protocols that lead to gene deletion outside hematopoietic cells, limiting the study of hematopoietic-specific effects. To overcome these limitations, we generated a hematopoietic-specific Gba knockout model by crossing Gbafl/fl mice with Vav-Cre, enabling early deletion of Gba exons 8-11 in hematopoietic stem and progenitor cells. These mice were backcrossed to 129X1/SvJ and C57BL/6 J backgrounds, revealing that genetic background significantly influences disease severity. Efficient Gba excision was confirmed in bone marrow, spleen, and thymus, with minimal recombination in the liver. In VavCre 129 GD mice, glucocerebrosidase activity in the spleen was severely reduced, leading to GlcCer and GlcSph accumulation and Gaucher cell infiltration in the spleen and femurs. Transcriptomic analysis identified upregulation of inflammatory and lysosomal pathways. Immune cell deconvolution from RNA-seq data further revealed an expansion of monocytes, dendritic cells, and pro-inflammatory macrophage subsets, suggesting an altered immune landscape. Additionally, GPNMB, a potential GD biomarker, was significantly elevated in both spleens and sera of VavCre 129 GD mice. This hematopoietic-specific GD model provides a powerful platform for studying GD pathophysiology, modifier genes, and immune dysregulation. It offers new opportunities for biomarker discovery and for developing strategies targeting hematopoietic and immune mechanisms in GD and related lysosomal storage disorders.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.