3'-Sialyllactose and B. infantis synergistically alleviate gut inflammation and barrier dysfunction by enriching cross-feeding bacteria for short-chain fatty acid biosynthesis.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-04-07 DOI:10.1080/19490976.2025.2486512
Mingzhi Yang, Zipeng Jiang, Lutong Zhou, Nana Chen, Huan He, Wentao Li, Zhixin Yu, Siming Jiao, Deguang Song, Yizhen Wang, Mingliang Jin, Zeqing Lu
{"title":"3'-Sialyllactose and <i>B. infantis</i> synergistically alleviate gut inflammation and barrier dysfunction by enriching cross-feeding bacteria for short-chain fatty acid biosynthesis.","authors":"Mingzhi Yang, Zipeng Jiang, Lutong Zhou, Nana Chen, Huan He, Wentao Li, Zhixin Yu, Siming Jiao, Deguang Song, Yizhen Wang, Mingliang Jin, Zeqing Lu","doi":"10.1080/19490976.2025.2486512","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC) poses significant threats to human health and quality of life worldwide, as it is a chronic inflammatory bowel disease. 3'-sialyllactose (3'-SL) is a key functional component of milk oligosaccharides. This study systematically evaluates the prebiotic effects of 3'-SL and its therapeutic potential in combination with <i>Bifidobacterium infantis</i> (<i>B. infantis</i>) for UC. The findings reveal that 3'-SL and <i>B. infantis</i> synergistically mitigate intestinal inflammation and barrier dysfunction by promoting the production of short-chain fatty acids (SCFAs) through cross-feeding mechanisms among gut microbiota. Individually, 3'-SL, <i>B. infantis</i>, and the synbiotic treatment all effectively alleviated UC symptoms, including reduced weight loss, improved disease activity scores, and prevention of colon shortening. Histopathological and immunofluorescence analyses further demonstrated that the synbiotic treatment significantly ameliorated colonic injury, enhanced barrier function, restored goblet cell counts, increased glycoprotein content in crypt goblet cells, and upregulated the expression of tight junction proteins (ZO-1, occludin, and claudin-1). Notably, the synbiotic treatment outperformed the individual components by better restoring gut microbiota balance, elevating SCFA levels, and modulating serum cytokine profiles, thereby reducing inflammation. These findings provide mechanistic insights into the protective effects of the synbiotic and underscore its therapeutic potential for UC and other intestinal inflammatory disorders.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2486512"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2486512","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ulcerative colitis (UC) poses significant threats to human health and quality of life worldwide, as it is a chronic inflammatory bowel disease. 3'-sialyllactose (3'-SL) is a key functional component of milk oligosaccharides. This study systematically evaluates the prebiotic effects of 3'-SL and its therapeutic potential in combination with Bifidobacterium infantis (B. infantis) for UC. The findings reveal that 3'-SL and B. infantis synergistically mitigate intestinal inflammation and barrier dysfunction by promoting the production of short-chain fatty acids (SCFAs) through cross-feeding mechanisms among gut microbiota. Individually, 3'-SL, B. infantis, and the synbiotic treatment all effectively alleviated UC symptoms, including reduced weight loss, improved disease activity scores, and prevention of colon shortening. Histopathological and immunofluorescence analyses further demonstrated that the synbiotic treatment significantly ameliorated colonic injury, enhanced barrier function, restored goblet cell counts, increased glycoprotein content in crypt goblet cells, and upregulated the expression of tight junction proteins (ZO-1, occludin, and claudin-1). Notably, the synbiotic treatment outperformed the individual components by better restoring gut microbiota balance, elevating SCFA levels, and modulating serum cytokine profiles, thereby reducing inflammation. These findings provide mechanistic insights into the protective effects of the synbiotic and underscore its therapeutic potential for UC and other intestinal inflammatory disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信