Identification of fatty acid metabolism-related genes in the tumor microenvironment of breast cancer by a development and validation of prognostic index signature.
{"title":"Identification of fatty acid metabolism-related genes in the tumor microenvironment of breast cancer by a development and validation of prognostic index signature.","authors":"Zhaofeng Ma, Man Zheng, Pulin Liu","doi":"10.1186/s41065-025-00425-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer (BRCA) is a malignancy originating in the breast cells, characterized by a poor overall survival rate. Post-resection, chemotherapy is commonly recommended as a primary therapeutic approach; however, its efficacy remains limited. Recent advancements in lipidomics and metabolomics have provided new insights into the intricate landscape of fatty acid metabolism (FAM) and the fatty acid lipidome in both health and disease. A growing body of evidence suggests that dysregulations in FAM and fatty acid levels play a significant role in cancer initiation and progression. Despite these advances, the precise mechanisms through which FAM mediates the anti-cancer effects of lobaplatin in BRCA remain poorly understood and warrant further investigation.</p><p><strong>Methods: </strong>GEO and TCGA data were classified into two types. We aimed to show how FAMGs influence immune function, immune checkpoints, and m6a in BRCA. A co-expression analysis discovered that gene expression is strongly connected to pyroptosis. The TCGA gathered information about mRNAsi, gene mutations, CNV, and clinical features.</p><p><strong>Results: </strong>In the low-risk group, overall survival (OS) is longer. GSEA was utilized to identify immune and tumor-related pathways. Most of the FAMG-derived prognostic signatures predominantly modulate immunological and oncogenic signaling pathways, including the Wnt, neurotrophin, chemokine, and calcium signaling cascades. Among the genes involved are CEL, WT1, and ULBP2. Expression levels varied as well. The prognostic model, CNVs, single nucleotide polymorphism (SNP), and drug sensitivity all pointed to the gene.</p><p><strong>Conclusions: </strong>The primary objective of this study is to identify and validate BRCA-associated FAMGs that can serve as prognostic indicators and provide insights into immune system function, while also offering evidence to support the development of fatty acid metabolism-related molecularly targeted therapeutics. Consequently, FAMGs and their interactions with the immune system, as well as their role in BRCA, may emerge as promising therapeutic targets.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"55"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00425-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Breast cancer (BRCA) is a malignancy originating in the breast cells, characterized by a poor overall survival rate. Post-resection, chemotherapy is commonly recommended as a primary therapeutic approach; however, its efficacy remains limited. Recent advancements in lipidomics and metabolomics have provided new insights into the intricate landscape of fatty acid metabolism (FAM) and the fatty acid lipidome in both health and disease. A growing body of evidence suggests that dysregulations in FAM and fatty acid levels play a significant role in cancer initiation and progression. Despite these advances, the precise mechanisms through which FAM mediates the anti-cancer effects of lobaplatin in BRCA remain poorly understood and warrant further investigation.
Methods: GEO and TCGA data were classified into two types. We aimed to show how FAMGs influence immune function, immune checkpoints, and m6a in BRCA. A co-expression analysis discovered that gene expression is strongly connected to pyroptosis. The TCGA gathered information about mRNAsi, gene mutations, CNV, and clinical features.
Results: In the low-risk group, overall survival (OS) is longer. GSEA was utilized to identify immune and tumor-related pathways. Most of the FAMG-derived prognostic signatures predominantly modulate immunological and oncogenic signaling pathways, including the Wnt, neurotrophin, chemokine, and calcium signaling cascades. Among the genes involved are CEL, WT1, and ULBP2. Expression levels varied as well. The prognostic model, CNVs, single nucleotide polymorphism (SNP), and drug sensitivity all pointed to the gene.
Conclusions: The primary objective of this study is to identify and validate BRCA-associated FAMGs that can serve as prognostic indicators and provide insights into immune system function, while also offering evidence to support the development of fatty acid metabolism-related molecularly targeted therapeutics. Consequently, FAMGs and their interactions with the immune system, as well as their role in BRCA, may emerge as promising therapeutic targets.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.