Halotolerant plant growth-promoting bacteria mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils.
{"title":"Halotolerant plant growth-promoting bacteria mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils.","authors":"Hui-Ping Li, Hong-Bin Ma, Jin-Lin Zhang","doi":"10.1093/femsec/fiaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinization has been the major form of soil degradation under the dual influence of climate change and high-intensity human activities, threatening global agricultural sustainability and food security. High salt concentrations induce osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, resulting in retarded growth, reduced biomass and even total crop failure. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR), as a widely distributed group of beneficial soil microorganisms, are emerging as a valuable biological tool for mitigating the toxic effects of high salt concentrations and improve plant growth while remediating degraded saline soil. Here, the current status, harm and treatment measures of global soil salinization are summarized. The mechanism of salt tolerance and growth promotion induced by HT-PGPR are reviewed. We highlight that advances in multi-omics technologies are helpful for exploring the genetic and molecular mechanisms of microbiota centered on HT-PGPR to address the issue of plant losses in saline soil. Future research is urgently needed to comprehensively and robustly determine the interaction mechanism between the root microbiome centered on HT-PGPR and salt-stressed plants via advanced means to maximize the efficacy of HT-PGPR as a microbial agent.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinization has been the major form of soil degradation under the dual influence of climate change and high-intensity human activities, threatening global agricultural sustainability and food security. High salt concentrations induce osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, resulting in retarded growth, reduced biomass and even total crop failure. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR), as a widely distributed group of beneficial soil microorganisms, are emerging as a valuable biological tool for mitigating the toxic effects of high salt concentrations and improve plant growth while remediating degraded saline soil. Here, the current status, harm and treatment measures of global soil salinization are summarized. The mechanism of salt tolerance and growth promotion induced by HT-PGPR are reviewed. We highlight that advances in multi-omics technologies are helpful for exploring the genetic and molecular mechanisms of microbiota centered on HT-PGPR to address the issue of plant losses in saline soil. Future research is urgently needed to comprehensively and robustly determine the interaction mechanism between the root microbiome centered on HT-PGPR and salt-stressed plants via advanced means to maximize the efficacy of HT-PGPR as a microbial agent.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms