Ângela Marques-Magalhães, Filipa Moreira-Silva, Inês Graça, Paula C Dias, Margareta P Correia, Maria Ana Alzamora, Rui Henrique, Marie Lopez, Paola B Arimondo, Vera Miranda-Gonçalves, Carmen Jerónimo
{"title":"Combination of MLo-1508 with sunitinib for the experimental treatment of papillary renal cell carcinoma.","authors":"Ângela Marques-Magalhães, Filipa Moreira-Silva, Inês Graça, Paula C Dias, Margareta P Correia, Maria Ana Alzamora, Rui Henrique, Marie Lopez, Paola B Arimondo, Vera Miranda-Gonçalves, Carmen Jerónimo","doi":"10.3389/fonc.2025.1399956","DOIUrl":null,"url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) is the 14<sup>th</sup> most incident cancer worldwide, and no curative therapeutic options are available for advanced and metastatic disease. Hence, new treatment alternatives are urgently needed to tackle disease management and drug resistance. Herein, we explored the use of MLo-1508 as an anti-tumoral agent in RCC and further assessed its combination with sunitinib for the treatment of papillary RCC. For that, different RCC cell lines were treated with both drugs, alone or in combination, and different phenotypic assays were performed. Moreover, global DNA methylation levels and specific DNMT3a activity were measured, and gene-specific CpG methylation and transcript levels were quantified after treatment. Finally, the combinatory potential of MLo-1508 and sunitinib were asses both in vitro and in vivo using the ACHN cell line. We found that MLo-1508 significantly decreased RCC cell viability while inducing apoptosis in a dose-dependent manner without cytotoxicity for non-malignant cells. Moreover, the treatment induced morphometric alterations and DNA damage in all RCC cell lines. MLo-1508 decreased <i>DNMT1</i> and <i>DNMT3A</i> transcript levels in 786-O and ACHN cells, inhibited DNMT3A activity, and reduced the global DNA methylation content of ACHN cells. When combined with sunitinib, a reduction in ACHN cell viability, as well as cell cycle arrest at G2/M was observed. Importantly, MLo-1508 decreased the sunitinib effective anti-tumoral concentration against ACHN cell viability. In an <i>in vivo</i> ACHN CAM model, the combination induced cell necrosis. Thus, MLo-1508 might improve sensitivity to sunitinib treatment by decreasing the required concentration and delaying resistance acquisition.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"15 ","pages":"1399956"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2025.1399956","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal cell carcinoma (RCC) is the 14th most incident cancer worldwide, and no curative therapeutic options are available for advanced and metastatic disease. Hence, new treatment alternatives are urgently needed to tackle disease management and drug resistance. Herein, we explored the use of MLo-1508 as an anti-tumoral agent in RCC and further assessed its combination with sunitinib for the treatment of papillary RCC. For that, different RCC cell lines were treated with both drugs, alone or in combination, and different phenotypic assays were performed. Moreover, global DNA methylation levels and specific DNMT3a activity were measured, and gene-specific CpG methylation and transcript levels were quantified after treatment. Finally, the combinatory potential of MLo-1508 and sunitinib were asses both in vitro and in vivo using the ACHN cell line. We found that MLo-1508 significantly decreased RCC cell viability while inducing apoptosis in a dose-dependent manner without cytotoxicity for non-malignant cells. Moreover, the treatment induced morphometric alterations and DNA damage in all RCC cell lines. MLo-1508 decreased DNMT1 and DNMT3A transcript levels in 786-O and ACHN cells, inhibited DNMT3A activity, and reduced the global DNA methylation content of ACHN cells. When combined with sunitinib, a reduction in ACHN cell viability, as well as cell cycle arrest at G2/M was observed. Importantly, MLo-1508 decreased the sunitinib effective anti-tumoral concentration against ACHN cell viability. In an in vivo ACHN CAM model, the combination induced cell necrosis. Thus, MLo-1508 might improve sensitivity to sunitinib treatment by decreasing the required concentration and delaying resistance acquisition.
期刊介绍:
Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.