Development and validation of a web-based dynamic nomogram to predict individualized risk of severe carotid artery stenosis based on digital subtract angiography.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Frontiers in Neurology Pub Date : 2025-03-24 eCollection Date: 2025-01-01 DOI:10.3389/fneur.2025.1565395
Jian Huang, Zhuoran Li, Xiaozhu Liu, Lirong Kuang, Shengxian Peng
{"title":"Development and validation of a web-based dynamic nomogram to predict individualized risk of severe carotid artery stenosis based on digital subtract angiography.","authors":"Jian Huang, Zhuoran Li, Xiaozhu Liu, Lirong Kuang, Shengxian Peng","doi":"10.3389/fneur.2025.1565395","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Delays in diagnosing severe carotid artery stenosis (CAS) are prevalent, particularly in low-income regions with limited access to imaging examinations. CAS is a major contributor to the recurrence and poor prognosis of ischemic stroke (IS). This retrospective cohort study proposed a non-invasive dynamic prediction model to identify potential high-risk severe carotid artery stenosis in patients with ischemic stroke.</p><p><strong>Methods: </strong>From July 2017 to March 2021, 739 patients with ischemic stroke were retrospectively recruited from the Department of Neurology at Liuzhou Traditional Chinese Medical Hospital. Risk factors for severe CAS were identified using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression (MLR) methods. The model was constructed after evaluating multicollinearity. The model's discrimination was assessed using the C-statistic and area under the curve (AUC). Its clinical utility was evaluated through the decision curve analysis (DCA) and the clinical impact curve (CIC). Calibration was examined using a calibration plot. To provide individualized predictions, a web-based tool was developed to estimate the risk of severe CAS.</p><p><strong>Results: </strong>Among the patients, 488 of 739 (66.0%) were diagnosed with severe CAS. Six variables were incorporated into the final model: history of stroke, serum sodium, hypersensitive C-reactive protein (hsCRP), C-reactive protein (CRP), basophil percentage, and mean corpuscular hemoglobin concentration (MCHC). Multicollinearity was ruled out through correlation plots, variance inflation factor (VIF) values, and tolerance values. The model demonstrated good discrimination, with a C-statistic/AUC of 0.70 in the test set. The DCA and CIC indicated that clinical decisions based on the model could benefit IS patients. The calibration plot showed strong concordance between predicted and observed probabilities. The web-based prediction model exhibited robust performance in estimating the risk of severe CAS.</p><p><strong>Conclusion: </strong>This study identified six key risk factors for severe CAS in IS patients. In addition, we developed a web-based dynamic nomogram to predict the individual risk of severe CAS. This tool can potentially support tailored, risk-based, and time-sensitive treatment strategies.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"16 ","pages":"1565395"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2025.1565395","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Delays in diagnosing severe carotid artery stenosis (CAS) are prevalent, particularly in low-income regions with limited access to imaging examinations. CAS is a major contributor to the recurrence and poor prognosis of ischemic stroke (IS). This retrospective cohort study proposed a non-invasive dynamic prediction model to identify potential high-risk severe carotid artery stenosis in patients with ischemic stroke.

Methods: From July 2017 to March 2021, 739 patients with ischemic stroke were retrospectively recruited from the Department of Neurology at Liuzhou Traditional Chinese Medical Hospital. Risk factors for severe CAS were identified using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression (MLR) methods. The model was constructed after evaluating multicollinearity. The model's discrimination was assessed using the C-statistic and area under the curve (AUC). Its clinical utility was evaluated through the decision curve analysis (DCA) and the clinical impact curve (CIC). Calibration was examined using a calibration plot. To provide individualized predictions, a web-based tool was developed to estimate the risk of severe CAS.

Results: Among the patients, 488 of 739 (66.0%) were diagnosed with severe CAS. Six variables were incorporated into the final model: history of stroke, serum sodium, hypersensitive C-reactive protein (hsCRP), C-reactive protein (CRP), basophil percentage, and mean corpuscular hemoglobin concentration (MCHC). Multicollinearity was ruled out through correlation plots, variance inflation factor (VIF) values, and tolerance values. The model demonstrated good discrimination, with a C-statistic/AUC of 0.70 in the test set. The DCA and CIC indicated that clinical decisions based on the model could benefit IS patients. The calibration plot showed strong concordance between predicted and observed probabilities. The web-based prediction model exhibited robust performance in estimating the risk of severe CAS.

Conclusion: This study identified six key risk factors for severe CAS in IS patients. In addition, we developed a web-based dynamic nomogram to predict the individual risk of severe CAS. This tool can potentially support tailored, risk-based, and time-sensitive treatment strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信