Mesoporous silica loaded with calcitonin gene-related peptide antagonist and curcumin alleviate oxidative stress and inflammation in the sciatic nerve.
Yi Zhu, Zhuoliang Zhang, Liangliang Gao, Yue Tian, Xinyu Lu, Yinhong Jiang, Huibin Su, Chengyong Gu, Chenghuan Shi, Lei Wei
{"title":"Mesoporous silica loaded with calcitonin gene-related peptide antagonist and <i>curcumin</i> alleviate oxidative stress and inflammation in the sciatic nerve.","authors":"Yi Zhu, Zhuoliang Zhang, Liangliang Gao, Yue Tian, Xinyu Lu, Yinhong Jiang, Huibin Su, Chengyong Gu, Chenghuan Shi, Lei Wei","doi":"10.3389/fmolb.2025.1510141","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuropathic pain (NP) is a kind of chronic pain that can lead to neurasthenia. The effectiveness of current drug treatment for NP is still unsatisfactory due to its side effects, addiction and withdrawal. In recent years, researchers have begun to develop nano-drug delivery systems for the diagnosis and treatment of NP diseases.</p><p><strong>Methods: </strong>We developed a disulfide-bonded magnetic mesoporous silica dual-drug delivery system consisting of <i>curcumin</i> (<i>Cur</i>) and a calcitonin gene-related peptide (CGRP) antagonist (CGRPi), and characterized by electron microscopy, Dynamic Light Scattering (DLS), Zeta, specific surface area and pore size detection. At the cellular level, the biocompatibility of CGRPi@<i>Cur</i>@Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PEG (FMCC) nanoparticles were tested by CCK-8 and dead/alive staining kit in BV2 cells; Inflammation levels and oxidative stress were measured by enzyme linked immunosorbent assay (ELISA) in lipopolysaccharide (LPS)-induced BV2 neuroinflammation model. <i>In vivo</i>, chronic constriction injury (CCI) model was constructed, and the effect of FMCC on pain behavior of CCI mice was detected by von Frey filaments test and thermal hyperalgesia; The effects of FMCC on the anti-inflammatory and oxidative stress of CCI were determined by pathological tests (HE and ROS staining), RT-PCR and ELISA.</p><p><strong>Results: </strong>FMCC had good biocompatibility and could be taken up by BV2 cells. At the cellular level, FMCC could effectively reverse oxidative stress, inflammation and CGRP expression in LPS-induced neuroinflammation model <i>in vitro</i>. At the animal level, the mice with CCI were administered with FMCC, which effectively reduced oxidative stress and inflammation and sustained relief of neuropathic pain.</p><p><strong>Conclusion: </strong>This study provides a new approach for the treatment of neuropathic pain.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1510141"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1510141","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neuropathic pain (NP) is a kind of chronic pain that can lead to neurasthenia. The effectiveness of current drug treatment for NP is still unsatisfactory due to its side effects, addiction and withdrawal. In recent years, researchers have begun to develop nano-drug delivery systems for the diagnosis and treatment of NP diseases.
Methods: We developed a disulfide-bonded magnetic mesoporous silica dual-drug delivery system consisting of curcumin (Cur) and a calcitonin gene-related peptide (CGRP) antagonist (CGRPi), and characterized by electron microscopy, Dynamic Light Scattering (DLS), Zeta, specific surface area and pore size detection. At the cellular level, the biocompatibility of CGRPi@Cur@Fe3O4@mSiO2-PEG (FMCC) nanoparticles were tested by CCK-8 and dead/alive staining kit in BV2 cells; Inflammation levels and oxidative stress were measured by enzyme linked immunosorbent assay (ELISA) in lipopolysaccharide (LPS)-induced BV2 neuroinflammation model. In vivo, chronic constriction injury (CCI) model was constructed, and the effect of FMCC on pain behavior of CCI mice was detected by von Frey filaments test and thermal hyperalgesia; The effects of FMCC on the anti-inflammatory and oxidative stress of CCI were determined by pathological tests (HE and ROS staining), RT-PCR and ELISA.
Results: FMCC had good biocompatibility and could be taken up by BV2 cells. At the cellular level, FMCC could effectively reverse oxidative stress, inflammation and CGRP expression in LPS-induced neuroinflammation model in vitro. At the animal level, the mice with CCI were administered with FMCC, which effectively reduced oxidative stress and inflammation and sustained relief of neuropathic pain.
Conclusion: This study provides a new approach for the treatment of neuropathic pain.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.