A structural and mechanistic model for BSEP dysfunction in PFIC2 cholestatic disease.

IF 5.2 1区 生物学 Q1 BIOLOGY
Clémence Gruget, Bharat G Reddy, Jonathan M Moore
{"title":"A structural and mechanistic model for BSEP dysfunction in PFIC2 cholestatic disease.","authors":"Clémence Gruget, Bharat G Reddy, Jonathan M Moore","doi":"10.1038/s42003-025-07908-0","DOIUrl":null,"url":null,"abstract":"<p><p>BSEP (ABCB11) transports bile salts across the canalicular membrane of hepatocytes, where they are incorporated into bile. Biallelic mutations in BSEP can cause Progressive Familial Intrahepatic Cholestasis Type 2 (PFIC2), a rare pediatric disease characterized by hepatic bile acid accumulation leading to hepatotoxicity and, ultimately, liver failure. The most frequently occurring PFIC2 disease-causing mutations are missense mutations, which often display a phenotype with decreased protein expression and impaired maturation and trafficking to the canalicular membrane. To characterize the mutational effects on protein thermodynamic stability, we carried out biophysical characterization of 13 distinct PFIC2-associated variants using in-cell thermal shift (CETSA) measurements. These experiments reveal a cluster of residues localized to the NBD2-ICL2 interface, which exhibit severe destabilization relative to wild-type BSEP. A high-resolution (2.8 Å) cryo-EM structure provides a framework for rationalizing the CETSA results, revealing a novel, NBD2-localized mechanism through which the most severe missense patient mutations drive cholestatic disease. These findings suggest potential strategies for identifying mechanism-based small molecule correctors to address BSEP trafficking defects and advance novel therapies for PFIC2 and other cholestatic diseases.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"531"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07908-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BSEP (ABCB11) transports bile salts across the canalicular membrane of hepatocytes, where they are incorporated into bile. Biallelic mutations in BSEP can cause Progressive Familial Intrahepatic Cholestasis Type 2 (PFIC2), a rare pediatric disease characterized by hepatic bile acid accumulation leading to hepatotoxicity and, ultimately, liver failure. The most frequently occurring PFIC2 disease-causing mutations are missense mutations, which often display a phenotype with decreased protein expression and impaired maturation and trafficking to the canalicular membrane. To characterize the mutational effects on protein thermodynamic stability, we carried out biophysical characterization of 13 distinct PFIC2-associated variants using in-cell thermal shift (CETSA) measurements. These experiments reveal a cluster of residues localized to the NBD2-ICL2 interface, which exhibit severe destabilization relative to wild-type BSEP. A high-resolution (2.8 Å) cryo-EM structure provides a framework for rationalizing the CETSA results, revealing a novel, NBD2-localized mechanism through which the most severe missense patient mutations drive cholestatic disease. These findings suggest potential strategies for identifying mechanism-based small molecule correctors to address BSEP trafficking defects and advance novel therapies for PFIC2 and other cholestatic diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信