{"title":"Age-dependent glial heterogeneity and traumatic injury responses in a vertebrate brain structure.","authors":"Huiwen Qin, Shuguang Yu, Ruyi Han, Jie He","doi":"10.1016/j.celrep.2025.115508","DOIUrl":null,"url":null,"abstract":"<p><p>The progression of traumatic brain injury (TBI) pathology is significantly influenced by age and involves a complex interplay of glial cells. However, the influence of age on the glial dynamics and their TBI responses remains mostly unexplored. Here, we obtain a comprehensive single-cell transcriptome atlas of three major glial types under the physiological and TBI conditions across four post-embryonic life stages in the zebrafish midbrain optic tectum. We identify a library of glial subtypes and states with specific age-dependent patterns that respond distinctly to TBI. Combining the glial interactome analysis and CRISPR-Cas9-mediated gene disruption, we reveal the essential roles of dla-notch3 and cxcl12a-cxcr4b interactions in the early-larval-stage-specific unresponsiveness of radial astrocytes to TBI and the TBI-induced age-independent recruitment of microglia to injury sites, respectively. Overall, our findings provide the molecular and cellular framework of TBI-induced age-related glial dynamics in vertebrate brains.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115508"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115508","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The progression of traumatic brain injury (TBI) pathology is significantly influenced by age and involves a complex interplay of glial cells. However, the influence of age on the glial dynamics and their TBI responses remains mostly unexplored. Here, we obtain a comprehensive single-cell transcriptome atlas of three major glial types under the physiological and TBI conditions across four post-embryonic life stages in the zebrafish midbrain optic tectum. We identify a library of glial subtypes and states with specific age-dependent patterns that respond distinctly to TBI. Combining the glial interactome analysis and CRISPR-Cas9-mediated gene disruption, we reveal the essential roles of dla-notch3 and cxcl12a-cxcr4b interactions in the early-larval-stage-specific unresponsiveness of radial astrocytes to TBI and the TBI-induced age-independent recruitment of microglia to injury sites, respectively. Overall, our findings provide the molecular and cellular framework of TBI-induced age-related glial dynamics in vertebrate brains.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.