Divya Rajasekharan , Michelle R. Madore , Paul Holtzheimer , Kelvin O. Lim , Leanne M. Williams , Noah S. Philip
{"title":"Personalized models of Beam/F3 targeting in transcranial magnetic stimulation for depression: Implications for precision clinical translation","authors":"Divya Rajasekharan , Michelle R. Madore , Paul Holtzheimer , Kelvin O. Lim , Leanne M. Williams , Noah S. Philip","doi":"10.1016/j.brs.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Clinical transcranial magnetic stimulation (TMS) for depression routinely relies on the scalp-based Beam/F3 targeting method to identify stimulation targets in the dorsolateral prefrontal cortex (dLPFC). Scalp-based targeting offers a low-cost and easily implemented method for TMS coil placement, enhancing treatment availability. However, limited anatomical and functional specificity of the Beam/F3 method may affect treatment outcomes, motivating assessment of the clinical standard.</div></div><div><h3>Methods</h3><div>In a naturalistic clinical trial of TMS conduced at four Veterans Affairs hospitals, the authors evaluate the Beam/F3 method using neuroimaging incorporated before TMS, after five treatment sessions, and after all thirty sessions. Personalized anatomical and electric field (E-field) models were developed to assess target location and network engagement, as well as subsequent effects on clinical outcomes.</div></div><div><h3>Results</h3><div>Anatomical models demonstrate that the Beam/F3 method produced reliable targets in the dLPFC across individuals and repeated treatment sessions. E-field models revealed that baseline anticorrelation between the stimulation center and the sgACC was associated with antidepressant symptom response after five TMS sessions (<span><math><mrow><mi>p</mi><mo>=</mo><mn>0.032</mn><mo>,</mo><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0.100</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>46</mn></mrow></math></span>) and at the end of treatment (<span><math><mrow><mi>p</mi><mo>=</mo><mn>0.042</mn><mo>,</mo><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0.107</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>39</mn></mrow></math></span>). Relatedly, E-field magnitude at the sgACC-anticorrelated peak in the prefrontal cortex correlated with symptom response throughout treatment (early treatment: <span><math><mrow><mi>p</mi><mo>=</mo><mn>0.001</mn><mo>,</mo><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0.220</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>46</mn></mrow></math></span>; end of treatment: <span><math><mrow><mi>p</mi><mo>=</mo><mn>0.026</mn><mo>,</mo><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0.127</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>39</mn></mrow></math></span>).</div></div><div><h3>Conclusions</h3><div>This work establishes that scalp-based targeting can produce reliable targets in the dLPFC and be successfully evaluated using a combination of neuroimaging and E-field modeling in pragmatic, multisite applications. Importantly, this investigation also found that significant network effects occur early in treatment and that Beam/F3 targets can engage functional mechanisms in TMS.</div></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"18 3","pages":"Pages 829-837"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X25000841","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Clinical transcranial magnetic stimulation (TMS) for depression routinely relies on the scalp-based Beam/F3 targeting method to identify stimulation targets in the dorsolateral prefrontal cortex (dLPFC). Scalp-based targeting offers a low-cost and easily implemented method for TMS coil placement, enhancing treatment availability. However, limited anatomical and functional specificity of the Beam/F3 method may affect treatment outcomes, motivating assessment of the clinical standard.
Methods
In a naturalistic clinical trial of TMS conduced at four Veterans Affairs hospitals, the authors evaluate the Beam/F3 method using neuroimaging incorporated before TMS, after five treatment sessions, and after all thirty sessions. Personalized anatomical and electric field (E-field) models were developed to assess target location and network engagement, as well as subsequent effects on clinical outcomes.
Results
Anatomical models demonstrate that the Beam/F3 method produced reliable targets in the dLPFC across individuals and repeated treatment sessions. E-field models revealed that baseline anticorrelation between the stimulation center and the sgACC was associated with antidepressant symptom response after five TMS sessions () and at the end of treatment (). Relatedly, E-field magnitude at the sgACC-anticorrelated peak in the prefrontal cortex correlated with symptom response throughout treatment (early treatment: ; end of treatment: ).
Conclusions
This work establishes that scalp-based targeting can produce reliable targets in the dLPFC and be successfully evaluated using a combination of neuroimaging and E-field modeling in pragmatic, multisite applications. Importantly, this investigation also found that significant network effects occur early in treatment and that Beam/F3 targets can engage functional mechanisms in TMS.
期刊介绍:
Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation.
Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.