{"title":"Effects of curvature on growing films of microorganisms.","authors":"Yuta Kuroda, Takeshi Kawasaki, Andreas M Menzel","doi":"10.1016/j.bpj.2025.04.003","DOIUrl":null,"url":null,"abstract":"<p><p>To provide insight into the basic properties of emerging structures when bacteria or other microorganisms conquer surfaces, it is crucial to analyze their growth behavior during the formation of thin films. In this regard, many theoretical studies focus on the behavior of elongating straight objects. They repel each other through volume exclusion and divide into two halves when reaching a certain threshold length. However, in reality, hardly any object of a certain elongation is perfectly straight. Therefore, we here study the consequences of the curvature of individuals on the growth of colonies and thin active films. This individual curvature, so far hardly considered, turns out to qualitatively affect the overall growth behavior of the colony. Particularly, strings of stacked curved cells emerge that show branched structures, while the size of orientationally ordered domains in the colony is significantly decreased. Furthermore, we identify emergent spatio-orientational coupling that is not observed in colonies of straight cells. Our results are important for a fundamental understanding of the interaction and spreading of microorganisms on surfaces, with implications for medical applications and bioengineering.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.04.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To provide insight into the basic properties of emerging structures when bacteria or other microorganisms conquer surfaces, it is crucial to analyze their growth behavior during the formation of thin films. In this regard, many theoretical studies focus on the behavior of elongating straight objects. They repel each other through volume exclusion and divide into two halves when reaching a certain threshold length. However, in reality, hardly any object of a certain elongation is perfectly straight. Therefore, we here study the consequences of the curvature of individuals on the growth of colonies and thin active films. This individual curvature, so far hardly considered, turns out to qualitatively affect the overall growth behavior of the colony. Particularly, strings of stacked curved cells emerge that show branched structures, while the size of orientationally ordered domains in the colony is significantly decreased. Furthermore, we identify emergent spatio-orientational coupling that is not observed in colonies of straight cells. Our results are important for a fundamental understanding of the interaction and spreading of microorganisms on surfaces, with implications for medical applications and bioengineering.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.