Latitudinal patterns of microplastic contamination in remote areas

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Arianna Crosta , Beatrice De Felice , Viviana Minolfi , Roberto S. Azzoni , Francesca Pittino , Andrea Franzetti , Marco A. Ortenzi , Stefano Gazzotti , Valentina Gianotti , Maddalena Roncoli , Eleonora Conterosito , G. Francesco Ficetola , Rahab N. Kinyanjui , Marco Parolini , Roberto Ambrosini
{"title":"Latitudinal patterns of microplastic contamination in remote areas","authors":"Arianna Crosta ,&nbsp;Beatrice De Felice ,&nbsp;Viviana Minolfi ,&nbsp;Roberto S. Azzoni ,&nbsp;Francesca Pittino ,&nbsp;Andrea Franzetti ,&nbsp;Marco A. Ortenzi ,&nbsp;Stefano Gazzotti ,&nbsp;Valentina Gianotti ,&nbsp;Maddalena Roncoli ,&nbsp;Eleonora Conterosito ,&nbsp;G. Francesco Ficetola ,&nbsp;Rahab N. Kinyanjui ,&nbsp;Marco Parolini ,&nbsp;Roberto Ambrosini","doi":"10.1016/j.envres.2025.121553","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) have been detected in a wide array of remote terrestrial areas. Analysing the occurrence of MPs in remote areas is paramount to understand their transport and deposition patterns. Despite the growing body of publications on this topic, studies are often spatially restricted. This limits assessments of global patterns in MPs distribution. Glaciers are landscape features without substantial MPs local inputs, which allows the evaluation of transport and deposition mechanisms. To fill this gap, we gathered 57 samples of supraglacial debris from 9 glaciers, ranging in latitude from 46°S to 78°N. MPs contamination was studied in terms of concentration, shape, size, and polymeric composition, observing significant variations with latitude for all considered parameters. The same held true when considering all anthropogenic particles (APs), including natural polymers. No single polymer was so common to be detected on all glaciers, suggesting atmospheric transport as the main driver of MPs contamination, possibly showing consistent global patterns. Presence of human modified environments in the areas surrounding the glaciers affected MPs size and composition. Detecting latitudinal trends is fundamental for constraining the atmospheric limb of the global plastic cycle and modelling MPs deposition. Since MPs can release toxic additives and pigments into the environment, studies on their distribution can help assess contamination loads and hazards at a global scale.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"277 ","pages":"Article 121553"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125008047","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) have been detected in a wide array of remote terrestrial areas. Analysing the occurrence of MPs in remote areas is paramount to understand their transport and deposition patterns. Despite the growing body of publications on this topic, studies are often spatially restricted. This limits assessments of global patterns in MPs distribution. Glaciers are landscape features without substantial MPs local inputs, which allows the evaluation of transport and deposition mechanisms. To fill this gap, we gathered 57 samples of supraglacial debris from 9 glaciers, ranging in latitude from 46°S to 78°N. MPs contamination was studied in terms of concentration, shape, size, and polymeric composition, observing significant variations with latitude for all considered parameters. The same held true when considering all anthropogenic particles (APs), including natural polymers. No single polymer was so common to be detected on all glaciers, suggesting atmospheric transport as the main driver of MPs contamination, possibly showing consistent global patterns. Presence of human modified environments in the areas surrounding the glaciers affected MPs size and composition. Detecting latitudinal trends is fundamental for constraining the atmospheric limb of the global plastic cycle and modelling MPs deposition. Since MPs can release toxic additives and pigments into the environment, studies on their distribution can help assess contamination loads and hazards at a global scale.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信