Utilization of phenolic lignin dimer models for the quantification of monolignols in biomass and in its derived organosolv lignins via thioacidolysis and GC-MS analysis.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
T Tran Ho, Olivia-Stella Salm, Tiit Lukk, Maria Kulp
{"title":"Utilization of phenolic lignin dimer models for the quantification of monolignols in biomass and in its derived organosolv lignins <i>via</i> thioacidolysis and GC-MS analysis.","authors":"T Tran Ho, Olivia-Stella Salm, Tiit Lukk, Maria Kulp","doi":"10.1039/d5ay00073d","DOIUrl":null,"url":null,"abstract":"<p><p>A thorough understanding of lignin's fundamental chemistry in lignocellulosic materials is essential for maximizing the efficiency of biorefineries. Thioacidolysis, followed by gas chromatography-mass spectrometry (GC-MS), has emerged as a reliable method for quantifying uncondensed monolignols, which are linked by labile aryl ether bonds within lignin network. However, the lack of commercially available pure thioethylated lignin monomers for GC analysis poses a challenge. This necessitates a multi-step synthesis process, which may not be feasible for all laboratories. We propose a novel approach that utilizes readily available phenolic lignin model dimers to establish a calibration curve for thioacidolysis quantification. These dimers, guaiacylglycerol-β-guaiacyl ether (GGE) and syringylglycerol-β-guaiacyl ether (SGE), upon thioacidolysis, yield thioethylated non-condensed guaiacyl (G) and syringyl (S) monomers. The GC-MS responses of these monomers are compared to those of bisphenol E, an internal standard (IS) to generate the calibration curve. This methodology exhibits excellent performance characteristics and was successfully employed to determine the thioethylated monomer contents and calculate of S/G ratios in three representative biomasses: aspen, barley straw, pine, and their organosolv lignin extracts.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ay00073d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A thorough understanding of lignin's fundamental chemistry in lignocellulosic materials is essential for maximizing the efficiency of biorefineries. Thioacidolysis, followed by gas chromatography-mass spectrometry (GC-MS), has emerged as a reliable method for quantifying uncondensed monolignols, which are linked by labile aryl ether bonds within lignin network. However, the lack of commercially available pure thioethylated lignin monomers for GC analysis poses a challenge. This necessitates a multi-step synthesis process, which may not be feasible for all laboratories. We propose a novel approach that utilizes readily available phenolic lignin model dimers to establish a calibration curve for thioacidolysis quantification. These dimers, guaiacylglycerol-β-guaiacyl ether (GGE) and syringylglycerol-β-guaiacyl ether (SGE), upon thioacidolysis, yield thioethylated non-condensed guaiacyl (G) and syringyl (S) monomers. The GC-MS responses of these monomers are compared to those of bisphenol E, an internal standard (IS) to generate the calibration curve. This methodology exhibits excellent performance characteristics and was successfully employed to determine the thioethylated monomer contents and calculate of S/G ratios in three representative biomasses: aspen, barley straw, pine, and their organosolv lignin extracts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信