Phytomolecule Epimedin C Mitigates Cartilage Extracellular Matrix Degradation and Osteoarthritis Progression in Rats.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Wenyao Yang, Xiangbo Meng, Jiming Li, Huijuan Cao, Ling Li, Cuishan Huang, Yingchao Wang, Wakam Chang, Sibylle Grad, Zhen Li, Ling Qin, Xinluan Wang
{"title":"Phytomolecule Epimedin C Mitigates Cartilage Extracellular Matrix Degradation and Osteoarthritis Progression in Rats.","authors":"Wenyao Yang, Xiangbo Meng, Jiming Li, Huijuan Cao, Ling Li, Cuishan Huang, Yingchao Wang, Wakam Chang, Sibylle Grad, Zhen Li, Ling Qin, Xinluan Wang","doi":"10.1002/adbi.202400685","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common degenerative joint disease associated with chronic inflammation. Epimedin C (EpiC), flavonoid from Epimedin, enhances the extracellular matrix (ECM) expression in human chondrocytes in vitro. This study aims to investigate the effects of EpiC on osteoarthritis progress in vivo. OA is induced in Lewis rats by medial meniscus transection and treatment with intra-articular injections of EpiC. EpiC treatment reduces joint swelling and improves hindlimb weight distribution in MMT-induced OA rats. Pathological changes in cartilage are observed and evaluated by the osteoarthritis research society international (OARSI) score and both EpiC groups have lower OARSI scores than the OA group. The EpiC groups also exhibit higher positive expressions of collagen II and aggrecan, and lower MMP13 and ADAMTS5 in the cartilage. RNA-seq suggest that EpiC may attenuate MMT-induced ECM degradation by inhibiting the JAK-STAT pathway. EpiC promotes the gene expressions of Col2a1 and Acan, while inhibiting Mmp13 and Col10a1 in cartilage. EpiC reduces the phosphorylated STAT3 in human chondrocyte pellets stimulated with inflammatory cytokines. In conclusion, EpiC demonstrates potential as an OA therapeutic by reducing pain and ECM degradation through p-STAT3 inhibition.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400685"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400685","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a common degenerative joint disease associated with chronic inflammation. Epimedin C (EpiC), flavonoid from Epimedin, enhances the extracellular matrix (ECM) expression in human chondrocytes in vitro. This study aims to investigate the effects of EpiC on osteoarthritis progress in vivo. OA is induced in Lewis rats by medial meniscus transection and treatment with intra-articular injections of EpiC. EpiC treatment reduces joint swelling and improves hindlimb weight distribution in MMT-induced OA rats. Pathological changes in cartilage are observed and evaluated by the osteoarthritis research society international (OARSI) score and both EpiC groups have lower OARSI scores than the OA group. The EpiC groups also exhibit higher positive expressions of collagen II and aggrecan, and lower MMP13 and ADAMTS5 in the cartilage. RNA-seq suggest that EpiC may attenuate MMT-induced ECM degradation by inhibiting the JAK-STAT pathway. EpiC promotes the gene expressions of Col2a1 and Acan, while inhibiting Mmp13 and Col10a1 in cartilage. EpiC reduces the phosphorylated STAT3 in human chondrocyte pellets stimulated with inflammatory cytokines. In conclusion, EpiC demonstrates potential as an OA therapeutic by reducing pain and ECM degradation through p-STAT3 inhibition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信