VaEIN3.1-VaERF057-VaFBA1 Module Positively Regulates Cold Tolerance by Accumulating Soluble Sugar in Grapevine.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Huimin Zhou, Yujun Hou, Lisha Tan, Qingyun Li, Wenjuan Li, Subash Kafle, Meilong Xu, Konstantin V Kiselev, Lin Meng, Haiping Xin
{"title":"VaEIN3.1-VaERF057-VaFBA1 Module Positively Regulates Cold Tolerance by Accumulating Soluble Sugar in Grapevine.","authors":"Huimin Zhou, Yujun Hou, Lisha Tan, Qingyun Li, Wenjuan Li, Subash Kafle, Meilong Xu, Konstantin V Kiselev, Lin Meng, Haiping Xin","doi":"10.1111/pce.15522","DOIUrl":null,"url":null,"abstract":"<p><p>Ethylene-responsive transcription factors (ERFs) were widely found to participate in cold response in plants. But the underlying regulatory mechanism of each cold-induced ERFs remains to be elucidated. Previously, we identified VaERF057 as a cold-induced gene in Vitis amurensis, a cold-hardy wild Vitis species. Here we found that overexpression of VaERF057 (VaERF057-OE) enhanced the freezing tolerance of V. amurensis roots. While VaERF057 knockdown tissues show decreased cold tolerance than control. DAP-seq combined with transcriptome data (VaERF057-OE roots) allowed to identify VaFBA1 (fructose-1,6-bisphosphate aldolase) as a downstream target of VaERF057. VaERF057 can bind to the VaFBA1 promoters and activate its expression. VaERF057-OE roots show increased expression of VaFBA1 and high content of soluble sugar than the control, whereas VaERF057 knockdown tissues showed opposite changes. Results from OE and knockdown material also support the role of VaFBA1 in regulating soluble sugar content and cold tolerance in grapevines. Furthermore, cold-induced expression of VaERF057 was found to be regulated by ethylene-insensitive3-1 (VaEIN3.1). Overexpression of VaEIN3.1 enhanced the transcription of VaERF057 and VaFBA1, the content of soluble sugar and cold tolerance in grapevine. VaEIN3.1 knockdown tissues show opposite trends when compared to VaEIN3.1-OE lines. Together, these results suggested a positive contribution of VaEIN3.1-VaERF057-VaFBA1 module in response to cold stress in grapevine.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15522","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ethylene-responsive transcription factors (ERFs) were widely found to participate in cold response in plants. But the underlying regulatory mechanism of each cold-induced ERFs remains to be elucidated. Previously, we identified VaERF057 as a cold-induced gene in Vitis amurensis, a cold-hardy wild Vitis species. Here we found that overexpression of VaERF057 (VaERF057-OE) enhanced the freezing tolerance of V. amurensis roots. While VaERF057 knockdown tissues show decreased cold tolerance than control. DAP-seq combined with transcriptome data (VaERF057-OE roots) allowed to identify VaFBA1 (fructose-1,6-bisphosphate aldolase) as a downstream target of VaERF057. VaERF057 can bind to the VaFBA1 promoters and activate its expression. VaERF057-OE roots show increased expression of VaFBA1 and high content of soluble sugar than the control, whereas VaERF057 knockdown tissues showed opposite changes. Results from OE and knockdown material also support the role of VaFBA1 in regulating soluble sugar content and cold tolerance in grapevines. Furthermore, cold-induced expression of VaERF057 was found to be regulated by ethylene-insensitive3-1 (VaEIN3.1). Overexpression of VaEIN3.1 enhanced the transcription of VaERF057 and VaFBA1, the content of soluble sugar and cold tolerance in grapevine. VaEIN3.1 knockdown tissues show opposite trends when compared to VaEIN3.1-OE lines. Together, these results suggested a positive contribution of VaEIN3.1-VaERF057-VaFBA1 module in response to cold stress in grapevine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信