In Situ Electrochemical Reduction of Imidacloprid involving a Nitroso-Intermediate-Trapped DWCNT and Its Biomimetic Cellular Oxidative Stress-Related Mediated Oxidation of Thiols.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kandavel Preethika Andal, Annamalai Senthil Kumar
{"title":"In Situ Electrochemical Reduction of Imidacloprid involving a Nitroso-Intermediate-Trapped DWCNT and Its Biomimetic Cellular Oxidative Stress-Related Mediated Oxidation of Thiols.","authors":"Kandavel Preethika Andal, Annamalai Senthil Kumar","doi":"10.1002/asia.202401779","DOIUrl":null,"url":null,"abstract":"<p><p>Imidacloprid (IMP) is a widely used pesticide and insecticide known for its effectiveness in controlling pests and increasing crop yields. Exposure of the compound to water bodies has led to environmental pollution and adverse effects on human health. One major concern is the generation of oxidative-stress in the cellular system, which is often a result of IMP exposure. Although the exact mechanism of toxicity is not fully understood, it is believed that the nitroso-intermediate of IMP (IMP-NO) binds to acetylcholine receptors, disrupting neural function. Thiol pools in the blood serum act as antioxidants to mitigate the toxicity. This study presents an in situ electrochemical conversion of IMP into its key intermediate, IMP-NO, and its subsequent entrapment on a double-walled carbon nanotube-modified glassy carbon electrode (GCE/DWCNT@IMP-NO) as a surface confined redox-peak in a physiological solution. It was characterized by SEM, FTIR, Raman, SECM, and LC-MS techniques. The system exhibited excellent mediated oxidation of the thiol group, using cysteine as a model. The findings presented in this work correlate with observations related to cellular oxidative-stress and its thiol-assisted mitigation. Employing a Michaelis-Menten-type enzyme-substrate reaction mechanism and estimated the kinetic parameters. Chronoamperometric techniques were used to demonstrate the oxidative detection of thiol.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401779"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401779","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Imidacloprid (IMP) is a widely used pesticide and insecticide known for its effectiveness in controlling pests and increasing crop yields. Exposure of the compound to water bodies has led to environmental pollution and adverse effects on human health. One major concern is the generation of oxidative-stress in the cellular system, which is often a result of IMP exposure. Although the exact mechanism of toxicity is not fully understood, it is believed that the nitroso-intermediate of IMP (IMP-NO) binds to acetylcholine receptors, disrupting neural function. Thiol pools in the blood serum act as antioxidants to mitigate the toxicity. This study presents an in situ electrochemical conversion of IMP into its key intermediate, IMP-NO, and its subsequent entrapment on a double-walled carbon nanotube-modified glassy carbon electrode (GCE/DWCNT@IMP-NO) as a surface confined redox-peak in a physiological solution. It was characterized by SEM, FTIR, Raman, SECM, and LC-MS techniques. The system exhibited excellent mediated oxidation of the thiol group, using cysteine as a model. The findings presented in this work correlate with observations related to cellular oxidative-stress and its thiol-assisted mitigation. Employing a Michaelis-Menten-type enzyme-substrate reaction mechanism and estimated the kinetic parameters. Chronoamperometric techniques were used to demonstrate the oxidative detection of thiol.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信