{"title":"Electroacupuncture's Impact on the Hippocampal RAGE/LRP1 Receptor System in SAMP8 Mice.","authors":"Zhitao Hou, Jindi Ma, Xian Zhang, Liying Song, Yan Li, Xiaochen Song, Xinying Hu, Dongdong Li, Changyuan He, Yuefeng Sun, Hongbo Cai, Jing Chen","doi":"10.1002/adbi.202400377","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related cognitive impairment (ARCI) is linked to β-amyloid (Aβ) accumulation and disrupted blood-brain barrier (BBB) transport via receptors for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein 1 (LRP1). This study examines electroacupuncture (EA) effects on cognition, hippocampal pathology, neurotransmitters, and the RAGE/LRP1 system in senescence-accelerated mouse prone 8 (SAMP8) mice. EA at Zusanli (ST36) and Baihui (GV20) improved cognitive performance, reduced hippocampal neuronal degeneration, elevated cerebrospinal fluid dopamine, norepinephrine, serotonin, and 5-hydroxyindoleacetic acid, and decreased Aβ42 levels. EA downregulated hippocampal RAGE, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), upregulated LRP1 and apolipoprotein E (ApoE), promoting Aβ clearance. NF-κB expression remained unchanged, suggesting alternative anti-inflammatory pathways. Thus, EA offers a promising non-pharmacological treatment for ARCI.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400377"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400377","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related cognitive impairment (ARCI) is linked to β-amyloid (Aβ) accumulation and disrupted blood-brain barrier (BBB) transport via receptors for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein 1 (LRP1). This study examines electroacupuncture (EA) effects on cognition, hippocampal pathology, neurotransmitters, and the RAGE/LRP1 system in senescence-accelerated mouse prone 8 (SAMP8) mice. EA at Zusanli (ST36) and Baihui (GV20) improved cognitive performance, reduced hippocampal neuronal degeneration, elevated cerebrospinal fluid dopamine, norepinephrine, serotonin, and 5-hydroxyindoleacetic acid, and decreased Aβ42 levels. EA downregulated hippocampal RAGE, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), upregulated LRP1 and apolipoprotein E (ApoE), promoting Aβ clearance. NF-κB expression remained unchanged, suggesting alternative anti-inflammatory pathways. Thus, EA offers a promising non-pharmacological treatment for ARCI.