Edaravone Alleviates BV-2 Microglia-Mediated Neuroinflammation Through the PI3K/AKT/ NF-κB Pathway.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Li Yang, Zhaoda Duan, Dongyao Xu, Yingqi Peng, Yuke Wu, Yujia Yang, Qian Yin, Lanxi Fang, Shan Yan, Chunyun Wu
{"title":"Edaravone Alleviates BV-2 Microglia-Mediated Neuroinflammation Through the PI3K/AKT/ NF-κB Pathway.","authors":"Li Yang, Zhaoda Duan, Dongyao Xu, Yingqi Peng, Yuke Wu, Yujia Yang, Qian Yin, Lanxi Fang, Shan Yan, Chunyun Wu","doi":"10.1002/adbi.202400501","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke (IS) poses a significant threat to human health. Research has demonstrated that microglia (MG)-mediated neuroinflammatory responses play a crucial role in the pathogenesis of IS. Consequently, inhibiting MG activation and reducing the inflammatory response may be key strategies for the clinical treatment of stroke and neurodegenerative diseases. Edaravone (EDA), a potent anti-inflammatory and antioxidant, is currently used in the clinical treatment of IS; however, its anti-inflammatory mechanisms remain inadequately understood. To address this, network pharmacology (NP) analysis is employed to identify the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway as a potential mediator of the inflammatory response triggered by activated microglia following EDA treatment. In vitro oxygen-glucose deprivation (OGD) is used to induce BV-2 MG activation, and an in vivo middle cerebral artery occlusion (MCAO) mouse model is established. Western blot and immunofluorescence staining are used to detect changes in the phosphorylation levels of pathway-related proteins and the expression of inflammatory factors. Additionally, the PI3K pathway inhibitor LY294002 and a PI3K overexpression plasmid are introduced to further analyze the expression changes of these markers. The results suggest that EDA may alleviate the inflammatory response mediated by activated MG through the PI3K/Akt signaling pathway.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400501"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400501","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke (IS) poses a significant threat to human health. Research has demonstrated that microglia (MG)-mediated neuroinflammatory responses play a crucial role in the pathogenesis of IS. Consequently, inhibiting MG activation and reducing the inflammatory response may be key strategies for the clinical treatment of stroke and neurodegenerative diseases. Edaravone (EDA), a potent anti-inflammatory and antioxidant, is currently used in the clinical treatment of IS; however, its anti-inflammatory mechanisms remain inadequately understood. To address this, network pharmacology (NP) analysis is employed to identify the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway as a potential mediator of the inflammatory response triggered by activated microglia following EDA treatment. In vitro oxygen-glucose deprivation (OGD) is used to induce BV-2 MG activation, and an in vivo middle cerebral artery occlusion (MCAO) mouse model is established. Western blot and immunofluorescence staining are used to detect changes in the phosphorylation levels of pathway-related proteins and the expression of inflammatory factors. Additionally, the PI3K pathway inhibitor LY294002 and a PI3K overexpression plasmid are introduced to further analyze the expression changes of these markers. The results suggest that EDA may alleviate the inflammatory response mediated by activated MG through the PI3K/Akt signaling pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信