{"title":"The Importin-β Protein LbSAD2 Enhances Salt Gland Development and Salt Resistance in the Recretohalophyte Limonium bicolor.","authors":"Qiuyu Ma, Boqing Zhao, Xiangmei Jiao, Yaqiong Sui, Mingfa Sun, Jianfei Ma, Jingwen Zhu, Baoshan Wang, Fang Yuan","doi":"10.1111/pce.15524","DOIUrl":null,"url":null,"abstract":"<p><p>Limonium bicolor is a typical recretohalophyte with specialised salt glands that secrete excessive Na<sup>+</sup> out of the plant. The detailed mechanisms of salt gland development and salt resistance are largely unclear. Here, we investigated the function of the importin-β protein LbSAD2 from L. bicolor. Lines with silenced LbSAD2 expression showed significantly lower salt gland density, salt-secretion ability and salt resistance, whereas LbSAD2 overexpression lines had a greater number of salt glands with an abnormal distribution in the abaxial and leaf adaxial surfaces. A previously uncharacterised hydrophobic protein, Lb2G12077, can bind to the LbSAD2 promoter to inhibit the transcription of LbSAD2 verified by a yeast one-hybrid, electrophoretic mobility shift and dual-luciferase reporter assay. Further functional validation revealed that Lb2G12077 demoted salt gland development and salt resistance of L. bicolor. Moreover, a yeast two-hybrid, bimolecular fluorescence complementation and GST pull-down assays indicated that the hypothetical protein Lb2G12567 interacts with LbSAD2, whose silenced lines also showed significantly reduced salt gland density, salt-secretion ability and salt resistance, suggesting Lb2G12567 played a similar positive role in salt resistance. The current LbSAD2 pathway sheds light on salt gland development and salt resistance in L. bicolor, laying the foundation for increasing salt tolerance in crops.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15524","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Limonium bicolor is a typical recretohalophyte with specialised salt glands that secrete excessive Na+ out of the plant. The detailed mechanisms of salt gland development and salt resistance are largely unclear. Here, we investigated the function of the importin-β protein LbSAD2 from L. bicolor. Lines with silenced LbSAD2 expression showed significantly lower salt gland density, salt-secretion ability and salt resistance, whereas LbSAD2 overexpression lines had a greater number of salt glands with an abnormal distribution in the abaxial and leaf adaxial surfaces. A previously uncharacterised hydrophobic protein, Lb2G12077, can bind to the LbSAD2 promoter to inhibit the transcription of LbSAD2 verified by a yeast one-hybrid, electrophoretic mobility shift and dual-luciferase reporter assay. Further functional validation revealed that Lb2G12077 demoted salt gland development and salt resistance of L. bicolor. Moreover, a yeast two-hybrid, bimolecular fluorescence complementation and GST pull-down assays indicated that the hypothetical protein Lb2G12567 interacts with LbSAD2, whose silenced lines also showed significantly reduced salt gland density, salt-secretion ability and salt resistance, suggesting Lb2G12567 played a similar positive role in salt resistance. The current LbSAD2 pathway sheds light on salt gland development and salt resistance in L. bicolor, laying the foundation for increasing salt tolerance in crops.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.