{"title":"Shade-Induced Regulation of Cell Wall Thickening in Moso Bamboo: A Molecular Pathway Involving XTH Activity.","authors":"Yali Xie, Junlei Xu, Xiangyi Li, Yuping Dou, Ruiman Geng, Zhanchao Cheng, Chongyang Wu, Jian Gao","doi":"10.1111/pce.15530","DOIUrl":null,"url":null,"abstract":"<p><p>How plants adapt to shade and perform specific morphogenesis is one of the secrets of the kingdom, and unravelling the underlying molecular mechanisms is crucial. Scanning electron microscope results have revealed that a low R/FR ratio (indicating shade conditions) inhibited the cell wall thickness of parenchyma cells and sieve tube cells of Moso bamboo (Phyllostachys edulis). Xyloglucan Endotransglucosylase/hydrolase3 (PheXTH3) was identified as a circadian rhythm gene responsive to a low R/FR ratio by qRT-PCR analysis, and it showed peak activity in the vascular system. PheXTH3 enhanced interfascicular fibre cell wall thickening and lignin accumulation in stable transgenic Arabidopsis thaliana lines. A low R/FR ratio downregulated PheXTH3 expression, subsequently suppressing cell wall thickening in vessel and interfascicular fibre cells. Both Yeast One-Hybrid experiments and Dual-LUC assays revealed that WOX3b1, AP2-39, and XTH3 may form a regulatory pathway. Collectively, we proposed a WOX3b1-AP2-39-XTH3 molecular pathway mediated by the ratio of low R/FR, which may regulate the thickening of cell wall in Moso bamboo.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15530","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
How plants adapt to shade and perform specific morphogenesis is one of the secrets of the kingdom, and unravelling the underlying molecular mechanisms is crucial. Scanning electron microscope results have revealed that a low R/FR ratio (indicating shade conditions) inhibited the cell wall thickness of parenchyma cells and sieve tube cells of Moso bamboo (Phyllostachys edulis). Xyloglucan Endotransglucosylase/hydrolase3 (PheXTH3) was identified as a circadian rhythm gene responsive to a low R/FR ratio by qRT-PCR analysis, and it showed peak activity in the vascular system. PheXTH3 enhanced interfascicular fibre cell wall thickening and lignin accumulation in stable transgenic Arabidopsis thaliana lines. A low R/FR ratio downregulated PheXTH3 expression, subsequently suppressing cell wall thickening in vessel and interfascicular fibre cells. Both Yeast One-Hybrid experiments and Dual-LUC assays revealed that WOX3b1, AP2-39, and XTH3 may form a regulatory pathway. Collectively, we proposed a WOX3b1-AP2-39-XTH3 molecular pathway mediated by the ratio of low R/FR, which may regulate the thickening of cell wall in Moso bamboo.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.