{"title":"Methemoglobin-Encapsulating Liposome: A Low-Risk Intravascular Contrast Agent for Magnetic Resonance Imaging.","authors":"Kazuaki Taguchi, Akira Sumiyoshi, Yuto Suzuki, Yoshikazu Ozawa, Megumi Iiyama, Shan Gao, Hiromi Sakai, Kensuke Osada, Kazuaki Matsumoto, Ichio Aoki","doi":"10.1021/acsabm.4c01451","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobin shows different contrasts on magnetic resonance imaging (MRI) depending on the iron and oxygenation states of heme. Functional brain MRI utilizes the differences in the concentrations of oxyhemoglobin and deoxyhemoglobin in cerebral blood vessels; blood clots produce strong magnetic susceptibility effects. We hypothesized that methemoglobin (MetHb)-based nanoparticles can act as MRI contrast agents because MetHb levels in red blood cells affect relaxivity and are strictly regulated to <1% in the blood. Herein, we describe the synthesis of methemoglobin-encapsulated liposomes (Met-HbVs) as contrast agents for MRI. Met-HbV, with a size of approximately 200 nm, increased longitudinal relaxivity (<i>r</i><sub>1</sub>) by 2.44-fold compared with hemoglobin-encapsulated liposomes <i>in vitro</i>. In contrast, the transverse relaxation capacity (<i>r</i><sub>2</sub>) of Met-HbVs was similar to that of the hemoglobin-encapsulated liposomes. Owing to its relaxivity, Met-HbV enhanced the signal intensity on T1-weighted images and angiography, especially in the veins. Furthermore, deleterious biological responses were seldom observed after Met-HbV administration in mice with chronic renal failure. In conclusion, Met-HbV possesses potential as a vascular contrast agent in MRI for angiography, with advantages over gadolinium-based contrast agents in terms of safety for patients with renal failure. To the best of our knowledge, this is the first report demonstrating the potential of MetHb as a biomaterial for contrast agents in MRI.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Hemoglobin shows different contrasts on magnetic resonance imaging (MRI) depending on the iron and oxygenation states of heme. Functional brain MRI utilizes the differences in the concentrations of oxyhemoglobin and deoxyhemoglobin in cerebral blood vessels; blood clots produce strong magnetic susceptibility effects. We hypothesized that methemoglobin (MetHb)-based nanoparticles can act as MRI contrast agents because MetHb levels in red blood cells affect relaxivity and are strictly regulated to <1% in the blood. Herein, we describe the synthesis of methemoglobin-encapsulated liposomes (Met-HbVs) as contrast agents for MRI. Met-HbV, with a size of approximately 200 nm, increased longitudinal relaxivity (r1) by 2.44-fold compared with hemoglobin-encapsulated liposomes in vitro. In contrast, the transverse relaxation capacity (r2) of Met-HbVs was similar to that of the hemoglobin-encapsulated liposomes. Owing to its relaxivity, Met-HbV enhanced the signal intensity on T1-weighted images and angiography, especially in the veins. Furthermore, deleterious biological responses were seldom observed after Met-HbV administration in mice with chronic renal failure. In conclusion, Met-HbV possesses potential as a vascular contrast agent in MRI for angiography, with advantages over gadolinium-based contrast agents in terms of safety for patients with renal failure. To the best of our knowledge, this is the first report demonstrating the potential of MetHb as a biomaterial for contrast agents in MRI.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.