Comprehensive and Explainable Fragmentation: A Machine Learning Approach for Fast and Accurate Mass Spectrum Prediction.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Xian-Yang Zhang, Xue-Qing Gong
{"title":"Comprehensive and Explainable Fragmentation: A Machine Learning Approach for Fast and Accurate Mass Spectrum Prediction.","authors":"Xian-Yang Zhang, Xue-Qing Gong","doi":"10.1021/acs.jpca.4c08663","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS) is a fundamental tool for chemical identification. The current in-silico prediction tools can handle broad instrument conditions, large molecular libraries or fragment structures only on a very limited level. In this work, we propose a dual-model machine learning strategy that can solve this problem by jointly a classification model for fragment identification and noise filtering, and a regression model for spectral prediction. With the help of attention mechanism, our method outperforms other algorithms in accuracy and efficiency, providing a deeper understanding of the molecular fragmentation behavior in mass spectra. Our method can facilitate the large-scale in-silico spectra calculations and the analysis of unknown molecular structures, which may promote wider applications for MS.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08663","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry (MS) is a fundamental tool for chemical identification. The current in-silico prediction tools can handle broad instrument conditions, large molecular libraries or fragment structures only on a very limited level. In this work, we propose a dual-model machine learning strategy that can solve this problem by jointly a classification model for fragment identification and noise filtering, and a regression model for spectral prediction. With the help of attention mechanism, our method outperforms other algorithms in accuracy and efficiency, providing a deeper understanding of the molecular fragmentation behavior in mass spectra. Our method can facilitate the large-scale in-silico spectra calculations and the analysis of unknown molecular structures, which may promote wider applications for MS.

全面和可解释的碎片:一种快速准确的质谱预测的机器学习方法。
质谱(MS)是化学鉴定的基本工具。目前的计算机预测工具只能在非常有限的水平上处理广泛的仪器条件,大型分子库或片段结构。在这项工作中,我们提出了一种双模型机器学习策略,通过联合使用用于片段识别和噪声过滤的分类模型和用于光谱预测的回归模型来解决这一问题。在注意机制的帮助下,我们的方法在精度和效率上都优于其他算法,可以更深入地了解质谱中的分子碎片行为。我们的方法可以方便地进行大规模的硅谱计算和未知分子结构的分析,这可能会促进质谱的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信