Microstructure Analysis and Mechanical Performance of TA10/6061 Large Size Explosive Welding Composite Pipes Based on Numerical Simulation Verification
IF 3.4 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Microstructure Analysis and Mechanical Performance of TA10/6061 Large Size Explosive Welding Composite Pipes Based on Numerical Simulation Verification","authors":"Haiwei Zhou, Fei Shao, Qian Xu, Linyue Bai, Jiaxin Yuan, Hailong Liu","doi":"10.1002/adem.202402440","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study is to investigate and analyze the preparation and application reliability of large-size TA10/6061 explosive welding composite pipes. The results demonstrate that the AUTODYN numerical simulation of the composite pipe accurately reflects the actual explosive welding interface morphology, with both exhibiting waveform interfaces, indicating the favorable bonding morphology. The titanium elements at the composite pipe interface diffused into the aluminum side without forming intermetallic compounds. A substantial number of fine grains are generated in the titanium structure at the interface, enhancing the bonding strength. The microscopic analysis confirms the high bonding quality of the composite pipe. The composite pipe demonstrated high tensile and shear strength, which are 481.62 and 165.08 MPa, respectively, which are about 62.40% and 60.96% higher than that of single 6061 aluminum alloy, which exhibits high strength, significantly improved the ductility, and the ductile fracture failure modes. The titanium side, aluminum side, and interface demonstrated excellent bending resistance, with the highest hardness value observed at the interface and an increase in hardness on both the titanium side and interface in the direction of detonation.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402440","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to investigate and analyze the preparation and application reliability of large-size TA10/6061 explosive welding composite pipes. The results demonstrate that the AUTODYN numerical simulation of the composite pipe accurately reflects the actual explosive welding interface morphology, with both exhibiting waveform interfaces, indicating the favorable bonding morphology. The titanium elements at the composite pipe interface diffused into the aluminum side without forming intermetallic compounds. A substantial number of fine grains are generated in the titanium structure at the interface, enhancing the bonding strength. The microscopic analysis confirms the high bonding quality of the composite pipe. The composite pipe demonstrated high tensile and shear strength, which are 481.62 and 165.08 MPa, respectively, which are about 62.40% and 60.96% higher than that of single 6061 aluminum alloy, which exhibits high strength, significantly improved the ductility, and the ductile fracture failure modes. The titanium side, aluminum side, and interface demonstrated excellent bending resistance, with the highest hardness value observed at the interface and an increase in hardness on both the titanium side and interface in the direction of detonation.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.