Intelligent Network Security Optimization Algorithm Based on Cnns

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Meirong Zheng, Ruchun Jia, Jing Zhu, Shaorong Zhang, Wenlong Yao, Yuanbin Li
{"title":"Intelligent Network Security Optimization Algorithm Based on Cnns","authors":"Meirong Zheng,&nbsp;Ruchun Jia,&nbsp;Jing Zhu,&nbsp;Shaorong Zhang,&nbsp;Wenlong Yao,&nbsp;Yuanbin Li","doi":"10.1002/cpe.70069","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To enhance the precision of security risk assessment and real-time control in edge-based intelligent networks, this article presents a novel risk assessment and control approach leveraging convolutional neural networks (CNNs). This method significantly improves on traditional intelligent network security risk assessment techniques, integrating CNN-based models to achieve higher accuracy and robustness. By incorporating genetic algorithms and proportional integral derivative control optimization, the proposed approach further ensures stability across intelligent network operations. Using the KDDCup99 network security attack database for evaluation, results demonstrate that this approach achieves a high accuracy rate and low false alarm rate. Additionally, the output signal amplitude closely aligns with the expected amplitude, showing only a 0.02 deviation, while maintaining low evaluation and control times. This ensures comprehensive security across edge intelligent systems, addressing key latency and precision requirements and achieving optimal control effects.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 9-11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70069","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the precision of security risk assessment and real-time control in edge-based intelligent networks, this article presents a novel risk assessment and control approach leveraging convolutional neural networks (CNNs). This method significantly improves on traditional intelligent network security risk assessment techniques, integrating CNN-based models to achieve higher accuracy and robustness. By incorporating genetic algorithms and proportional integral derivative control optimization, the proposed approach further ensures stability across intelligent network operations. Using the KDDCup99 network security attack database for evaluation, results demonstrate that this approach achieves a high accuracy rate and low false alarm rate. Additionally, the output signal amplitude closely aligns with the expected amplitude, showing only a 0.02 deviation, while maintaining low evaluation and control times. This ensures comprehensive security across edge intelligent systems, addressing key latency and precision requirements and achieving optimal control effects.

基于cnn的智能网络安全优化算法
为了提高边缘智能网络安全风险评估和实时控制的精度,本文提出了一种利用卷积神经网络(cnn)进行风险评估和控制的新方法。该方法显著改进了传统的智能网络安全风险评估技术,集成了基于cnn的模型,实现了更高的准确性和鲁棒性。该方法结合遗传算法和比例积分导数控制优化,进一步保证了智能网络运行的稳定性。利用KDDCup99网络安全攻击数据库进行评估,结果表明该方法具有较高的准确率和较低的虚警率。此外,输出信号幅度与预期幅度紧密一致,仅显示0.02偏差,同时保持较低的评估和控制时间。这确保了跨边缘智能系统的全面安全性,解决了关键延迟和精度要求,并实现了最佳控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信