Magnetic Effect on Thermocapillary Flow of Silicon Melt in an Annulus

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-12-18 DOI:10.1002/htj.23262
Ali Bendjaghlouli, Brahim Mahfoud, Hibet Errahmane Mahfoud
{"title":"Magnetic Effect on Thermocapillary Flow of Silicon Melt in an Annulus","authors":"Ali Bendjaghlouli,&nbsp;Brahim Mahfoud,&nbsp;Hibet Errahmane Mahfoud","doi":"10.1002/htj.23262","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Thermocapillary convection plays a crucial role in various processes, including the formation of crystals from a molten state. Recent studies have established that the oscillatory flow of the molten material during crystal growth is a significant contributor to the formation of undesirable micro-inhomogeneities. The oscillatory flow can cause uneven distribution of solute and impurities, leading to localized variations in crystal composition and structure. This article discusses the possibility of controlling bidirectional thermocapillary flow, which is one of the sources of inhomogeneity in produced crystals, using an external magnetic field. The model examined in this study is a shallow annulus filled with silicon melt. This research investigates the effects of the annular space and the magnetic field on the thermocapillary process. The mathematical model, formulated as partial differential equations, was solved using the finite-volume method. The results show the formation of hydrothermal waves with different azimuthal modes (<i>m</i> = 6, 4, and 3) corresponding, respectively, to the annular space <i>R</i> = 0.8, 0.7, and 0.6. Stronger magnetic fields attenuate the instabilities and reduce the vertical temperature gradient, transforming the isotherms into concentric circles, thereby improving the homogeneity of the crystals.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 3","pages":"1796-1806"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermocapillary convection plays a crucial role in various processes, including the formation of crystals from a molten state. Recent studies have established that the oscillatory flow of the molten material during crystal growth is a significant contributor to the formation of undesirable micro-inhomogeneities. The oscillatory flow can cause uneven distribution of solute and impurities, leading to localized variations in crystal composition and structure. This article discusses the possibility of controlling bidirectional thermocapillary flow, which is one of the sources of inhomogeneity in produced crystals, using an external magnetic field. The model examined in this study is a shallow annulus filled with silicon melt. This research investigates the effects of the annular space and the magnetic field on the thermocapillary process. The mathematical model, formulated as partial differential equations, was solved using the finite-volume method. The results show the formation of hydrothermal waves with different azimuthal modes (m = 6, 4, and 3) corresponding, respectively, to the annular space R = 0.8, 0.7, and 0.6. Stronger magnetic fields attenuate the instabilities and reduce the vertical temperature gradient, transforming the isotherms into concentric circles, thereby improving the homogeneity of the crystals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信