Clayton R. Coleman, Kenneth Shinozuka, Robert Tromm, Ottavia Dipasquale, Mendel Kaelen, Leor Roseman, Suresh Muthukumaraswamy, David J. Nutt, Lionel Barnett, Robin Carhart-Harris
{"title":"The Role of the Dorsolateral Prefrontal Cortex in Ego Dissolution and Emotional Arousal During the Psychedelic State","authors":"Clayton R. Coleman, Kenneth Shinozuka, Robert Tromm, Ottavia Dipasquale, Mendel Kaelen, Leor Roseman, Suresh Muthukumaraswamy, David J. Nutt, Lionel Barnett, Robin Carhart-Harris","doi":"10.1002/hbm.70209","DOIUrl":null,"url":null,"abstract":"<p>Lysergic acid diethylamide (LSD) is a classic serotonergic psychedelic that induces a profoundly altered conscious state. In conjunction with psychological support, it is currently being explored as a treatment for generalized anxiety disorder and depression. The dorsolateral prefrontal cortex (DLPFC) is a brain region that is known to be involved in mood regulation and disorders; hypofunction in the left DLPFC is associated with depression. This study investigated the role of the DLPFC in the psycho-emotional effects of LSD with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) data of healthy human participants during the acute LSD experience. In the fMRI data, we measured the correlation between changes in resting-state functional connectivity (RSFC) of the DLPFC and post-scan subjective ratings of positive mood, emotional arousal, and ego dissolution. We found significant, positive correlations between ego dissolution and functional connectivity between the left & right DLPFC, thalamus, and a higher-order visual area, the fusiform face area (FFA). Additionally, emotional arousal was significantly associated with increased connectivity between the right DLPFC, intraparietal sulcus (IPS), and the salience network (SN). A confirmational “reverse” analysis, in which the outputs of the original RSFC analysis were used as input seeds, substantiated the role of the right DLPFC and the aforementioned regions in both ego dissolution and emotional arousal. Subsequently, we measured the effects of LSD on directed functional connectivity in MEG data that was source-localized to the input and output regions of both the original and reverse analyses. The Granger causality (GC) analysis revealed that LSD increased information flow between two nodes of the ‘ego dissolution network’, the thalamus and the DLPFC, in the theta band, substantiating the hypothesis that disruptions in thalamic gating underlie the experience of ego dissolution. Overall, this multimodal study elucidates a role for the DLPFC in LSD-induced states of consciousness and sheds more light on the brain basis of ego dissolution.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70209","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70209","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Lysergic acid diethylamide (LSD) is a classic serotonergic psychedelic that induces a profoundly altered conscious state. In conjunction with psychological support, it is currently being explored as a treatment for generalized anxiety disorder and depression. The dorsolateral prefrontal cortex (DLPFC) is a brain region that is known to be involved in mood regulation and disorders; hypofunction in the left DLPFC is associated with depression. This study investigated the role of the DLPFC in the psycho-emotional effects of LSD with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) data of healthy human participants during the acute LSD experience. In the fMRI data, we measured the correlation between changes in resting-state functional connectivity (RSFC) of the DLPFC and post-scan subjective ratings of positive mood, emotional arousal, and ego dissolution. We found significant, positive correlations between ego dissolution and functional connectivity between the left & right DLPFC, thalamus, and a higher-order visual area, the fusiform face area (FFA). Additionally, emotional arousal was significantly associated with increased connectivity between the right DLPFC, intraparietal sulcus (IPS), and the salience network (SN). A confirmational “reverse” analysis, in which the outputs of the original RSFC analysis were used as input seeds, substantiated the role of the right DLPFC and the aforementioned regions in both ego dissolution and emotional arousal. Subsequently, we measured the effects of LSD on directed functional connectivity in MEG data that was source-localized to the input and output regions of both the original and reverse analyses. The Granger causality (GC) analysis revealed that LSD increased information flow between two nodes of the ‘ego dissolution network’, the thalamus and the DLPFC, in the theta band, substantiating the hypothesis that disruptions in thalamic gating underlie the experience of ego dissolution. Overall, this multimodal study elucidates a role for the DLPFC in LSD-induced states of consciousness and sheds more light on the brain basis of ego dissolution.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.