Production of TiNi/Ti2AlN Multilayer Films with Different Numbers of Layers and Evolution of Tribological and Adhesion Properties

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Semih Duran, Hikmet Çiçek, Ahmet Melik Yılmaz, İhsan Efeoğlu
{"title":"Production of TiNi/Ti2AlN Multilayer Films with Different Numbers of Layers and Evolution of Tribological and Adhesion Properties","authors":"Semih Duran,&nbsp;Hikmet Çiçek,&nbsp;Ahmet Melik Yılmaz,&nbsp;İhsan Efeoğlu","doi":"10.1002/adem.202402103","DOIUrl":null,"url":null,"abstract":"<p>TiNi/Ti<sub>2</sub>AlN multilayer films are deposited on AISI M2 steel and Inconel 718 substrates using the magnetron sputtering technique. After heat treatment at 750 °C, TiNi and Ti<sub>2</sub>AlN MAX phase crystal structures are obtained in these films. The effects of different layer numbers on the structural, mechanical, tribological, adhesion, and fatigue properties of TiNi/Ti<sub>2</sub>AlN multilayer films are investigated. All films’ thickness is measured to be ≈2 μm. The 20 layers film deposited on Inconel 718 exhibited the best mechanical properties, with a hardness of 30.6 GPa and an elastic modulus of 407 GPa. A significant improvement in the tribological performance of the films is observed with an increasing number of layers. The lowest wear rate, calculated as 1.96 × 10<sup>−5</sup> (mm<sup>3</sup> (N·m)<sup>−1</sup>), is observed for the 20 layers film deposited on Inconel 718 at room temperature. At high temperatures, the friction coefficients of the 16 and 20 layers films deposited on Inconel 718 decreased to 0.25. In terms of adhesion properties, the 10 layers films deposited on AISI M2 steel demonstrated the best performance with a critical load value of 45 N. The results of the multipass scratch test clearly showed that the 20 layers film deposited on Inconel 718 exhibited the best fatigue behavior among all films.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402103","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TiNi/Ti2AlN multilayer films are deposited on AISI M2 steel and Inconel 718 substrates using the magnetron sputtering technique. After heat treatment at 750 °C, TiNi and Ti2AlN MAX phase crystal structures are obtained in these films. The effects of different layer numbers on the structural, mechanical, tribological, adhesion, and fatigue properties of TiNi/Ti2AlN multilayer films are investigated. All films’ thickness is measured to be ≈2 μm. The 20 layers film deposited on Inconel 718 exhibited the best mechanical properties, with a hardness of 30.6 GPa and an elastic modulus of 407 GPa. A significant improvement in the tribological performance of the films is observed with an increasing number of layers. The lowest wear rate, calculated as 1.96 × 10−5 (mm3 (N·m)−1), is observed for the 20 layers film deposited on Inconel 718 at room temperature. At high temperatures, the friction coefficients of the 16 and 20 layers films deposited on Inconel 718 decreased to 0.25. In terms of adhesion properties, the 10 layers films deposited on AISI M2 steel demonstrated the best performance with a critical load value of 45 N. The results of the multipass scratch test clearly showed that the 20 layers film deposited on Inconel 718 exhibited the best fatigue behavior among all films.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信