Zixuan Chen, Chengtao Han, Huiwen Xie, Xingyu Chen, Haojie Zhang, Zongrun Sun, Min Liu
{"title":"2-Undecanone induces ferroptosis via the STAT3/GPX4 pathway to enhance sensitivity of renal cell carcinoma to sunitinib","authors":"Zixuan Chen, Chengtao Han, Huiwen Xie, Xingyu Chen, Haojie Zhang, Zongrun Sun, Min Liu","doi":"10.1002/biof.70016","DOIUrl":null,"url":null,"abstract":"<p>The development of resistance significantly reduces the efficacy of targeted therapies, such as sunitinib, in renal cell carcinoma (RCC) patients, emphasizing the need for novel therapeutic agents. Natural products, known for their diverse chemical structures and mechanisms of action, offer promising anti-tumor potential with favorable safety profiles and lower toxicity compared to synthetic drugs. 2-Undecanone, a natural compound extracted from <i>Houttuynia cordata</i> Thunb., has demonstrated anti-tumor effects, but its specific role in RCC treatment remains unclear. In this study, we integrated network pharmacology with in vitro experiments to explore the mechanisms underlying 2-Undecanone's effects on RCC. Our results reveal that 2-Undecanone effectively inhibits RCC cell viability, proliferation, and migration. Mechanistically, we discovered that 2-Undecanone induces ferroptosis in RCC cells by promoting reactive oxygen species (ROS) generation, intracellular Fe<sup>2+</sup> accumulation, glutathione (GSH) production, lipid peroxidation, and modulation of the STAT3/GPX4 signaling pathway. Furthermore, 2-Undecanone lowers the IC50 value of sunitinib in RCC cells, enhancing their sensitivity to this targeted therapy. Additionally, 2-Undecanone potentiates sunitinib-induced ferroptosis. In summary, our research reveals that 2-Undecanone enhances the sensitivity of RCC cells to sunitinib through targeting the STAT3/GPX4 pathway, providing new insights into potential therapeutic strategies for RCC.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of resistance significantly reduces the efficacy of targeted therapies, such as sunitinib, in renal cell carcinoma (RCC) patients, emphasizing the need for novel therapeutic agents. Natural products, known for their diverse chemical structures and mechanisms of action, offer promising anti-tumor potential with favorable safety profiles and lower toxicity compared to synthetic drugs. 2-Undecanone, a natural compound extracted from Houttuynia cordata Thunb., has demonstrated anti-tumor effects, but its specific role in RCC treatment remains unclear. In this study, we integrated network pharmacology with in vitro experiments to explore the mechanisms underlying 2-Undecanone's effects on RCC. Our results reveal that 2-Undecanone effectively inhibits RCC cell viability, proliferation, and migration. Mechanistically, we discovered that 2-Undecanone induces ferroptosis in RCC cells by promoting reactive oxygen species (ROS) generation, intracellular Fe2+ accumulation, glutathione (GSH) production, lipid peroxidation, and modulation of the STAT3/GPX4 signaling pathway. Furthermore, 2-Undecanone lowers the IC50 value of sunitinib in RCC cells, enhancing their sensitivity to this targeted therapy. Additionally, 2-Undecanone potentiates sunitinib-induced ferroptosis. In summary, our research reveals that 2-Undecanone enhances the sensitivity of RCC cells to sunitinib through targeting the STAT3/GPX4 pathway, providing new insights into potential therapeutic strategies for RCC.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.