E-SDHGN: A Multifunction Radar Working Mode Recognition Framework in Complex Electromagnetic Environments

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Minhong Sun, Hangxin Chen, Zhangyi Shao, Zhaoyang Qiu, Zhenyin Wen, Deguo Zeng
{"title":"E-SDHGN: A Multifunction Radar Working Mode Recognition Framework in Complex Electromagnetic Environments","authors":"Minhong Sun,&nbsp;Hangxin Chen,&nbsp;Zhangyi Shao,&nbsp;Zhaoyang Qiu,&nbsp;Zhenyin Wen,&nbsp;Deguo Zeng","doi":"10.1049/rsn2.70025","DOIUrl":null,"url":null,"abstract":"<p>A multifunction radar (MFR) can operate in multiple modes and perform various tasks such as surveillance, detection, fire control, search and tracking. Recognising an MFR's operating mode is critical in electronic warfare and intelligence reconnaissance, aiding practical threat assessment and countermeasure tasks. However, current recognition methods face challenges such as overlapping parameters among working modes and suboptimal recognition accuracy under conditions with parameter errors, missing pulses and false pulses. Spurred by these concerns, this paper proposes an entropy-enhanced spatial-deformable hybrid multiscale group network (E-SDHGN) to recognise the operating mode of an MFR and address these challenges. E-SDHGN employs multidimensional entropy computations to construct robust features and integrates deformable convolution and positional encoding to enhance the model's ability to capture complex features. Additionally, it enhances feature extraction and fusion within the dynamic shared residual network (DSRN) module by integrating KAN modules and hybrid weight-sharing strategies. Additionally, an adaptive margin feature module based on attention mechanisms improves classification accuracy in overlapping parameter conditions. Experimental results demonstrate that E-SDHGN achieves superior recognition accuracy and robustness, even under challenging parameter errors, missing pulses and false pulses. This underscores its value for applications in complex electromagnetic environments.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70025","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A multifunction radar (MFR) can operate in multiple modes and perform various tasks such as surveillance, detection, fire control, search and tracking. Recognising an MFR's operating mode is critical in electronic warfare and intelligence reconnaissance, aiding practical threat assessment and countermeasure tasks. However, current recognition methods face challenges such as overlapping parameters among working modes and suboptimal recognition accuracy under conditions with parameter errors, missing pulses and false pulses. Spurred by these concerns, this paper proposes an entropy-enhanced spatial-deformable hybrid multiscale group network (E-SDHGN) to recognise the operating mode of an MFR and address these challenges. E-SDHGN employs multidimensional entropy computations to construct robust features and integrates deformable convolution and positional encoding to enhance the model's ability to capture complex features. Additionally, it enhances feature extraction and fusion within the dynamic shared residual network (DSRN) module by integrating KAN modules and hybrid weight-sharing strategies. Additionally, an adaptive margin feature module based on attention mechanisms improves classification accuracy in overlapping parameter conditions. Experimental results demonstrate that E-SDHGN achieves superior recognition accuracy and robustness, even under challenging parameter errors, missing pulses and false pulses. This underscores its value for applications in complex electromagnetic environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信