The Role of Periodic Mixing on Thermal Energy Extraction From an L-Shaped Heater Covered by Porous Layer

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-12-24 DOI:10.1002/htj.23265
Nehila Tarek, Muneer Ismael
{"title":"The Role of Periodic Mixing on Thermal Energy Extraction From an L-Shaped Heater Covered by Porous Layer","authors":"Nehila Tarek,&nbsp;Muneer Ismael","doi":"10.1002/htj.23265","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this numerical study, a technical solution is proposed to maximize heat transfer within a square cavity by integrating an L-shaped porous layer in the lower right part of the cavity, covering an L-shaped heat sink heated to a set temperature. Additionally, a thin bar undergoes a periodic sinusoidal motion with an amplitude of <i>V</i><sub>bar</sub> and a period of <i>ω</i><sub>bar</sub>. The finite element method is used to solve the governing dimensionless nonlinear equations, with a mesh test supported by numerical and experimental validations. The study focuses on the effects of bar displacement amplitude (<i>V</i><sub>bar</sub> = 0.1–0.4), displacement period (<i>ω</i><sub>bar</sub> = 1/3–1), Reynolds number (<i>Re</i> = 50, 100, and 200), Darcy number (<i>Da</i> = 10<sup>−2</sup> and 10<sup>−</sup><sup>4</sup>), and porosity (<i>ε</i> = 0.75–0.95) on the average Nusselt number, streamlines, and isotherms distribution. The numerical results show that increasing the bar displacement amplitude, Darcy number, and Reynolds number can significantly enhance the overall heat transfer, while an increase in the porosity of the porous medium has the opposite effect. The bar's sinusoidal motion and the porous medium's presence alter the flow dynamics within the cavity and directly influence heat transfer.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 3","pages":"1851-1864"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this numerical study, a technical solution is proposed to maximize heat transfer within a square cavity by integrating an L-shaped porous layer in the lower right part of the cavity, covering an L-shaped heat sink heated to a set temperature. Additionally, a thin bar undergoes a periodic sinusoidal motion with an amplitude of Vbar and a period of ωbar. The finite element method is used to solve the governing dimensionless nonlinear equations, with a mesh test supported by numerical and experimental validations. The study focuses on the effects of bar displacement amplitude (Vbar = 0.1–0.4), displacement period (ωbar = 1/3–1), Reynolds number (Re = 50, 100, and 200), Darcy number (Da = 10−2 and 104), and porosity (ε = 0.75–0.95) on the average Nusselt number, streamlines, and isotherms distribution. The numerical results show that increasing the bar displacement amplitude, Darcy number, and Reynolds number can significantly enhance the overall heat transfer, while an increase in the porosity of the porous medium has the opposite effect. The bar's sinusoidal motion and the porous medium's presence alter the flow dynamics within the cavity and directly influence heat transfer.

在这项数值研究中,提出了一种技术解决方案,通过在方形空腔的右下方集成一个 L 形多孔层,覆盖一个加热到设定温度的 L 形散热器,从而最大化空腔内的热传递。此外,一根细棒经历了振幅为 Vbar、周期为 ωbar 的周期性正弦运动。研究采用有限元法求解无量纲非线性方程,并通过数值和实验验证支持网格测试。研究重点是棒材位移振幅(Vbar = 0.1-0.4)、位移周期(ωbar = 1/3-1)、雷诺数(Re = 50、100 和 200)、达西数(Da = 10-2 和 10-4)和孔隙率(ε = 0.75-0.95)对平均努塞尔特数、流线和等温线分布的影响。数值结果表明,增大棒材位移幅度、达西数和雷诺数可显著提高整体传热效果,而增大多孔介质的孔隙率则会产生相反的效果。棒材的正弦运动和多孔介质的存在改变了空腔内的流动动力学,并直接影响传热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信