Mechanical Metamaterials for Bioengineering: In Vitro, Wearable, and Implantable Applications

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Madihah Kazim, Aniket Pal, Debkalpa Goswami
{"title":"Mechanical Metamaterials for Bioengineering: In Vitro, Wearable, and Implantable Applications","authors":"Madihah Kazim,&nbsp;Aniket Pal,&nbsp;Debkalpa Goswami","doi":"10.1002/adem.202401806","DOIUrl":null,"url":null,"abstract":"<p>Mechanical metamaterials represent a promising class of materials characterized by unconventional mechanical properties derived from their engineered architectures. In the realm of bioengineering, these materials offer unique opportunities for applications spanning in vitro models, wearable devices, and implantable biomedical technologies. This review discusses recent advancements and applications of mechanical metamaterials in bioengineering contexts. Mechanical metamaterials, tailored to mimic specific mechanical properties of biological tissues, enhance the fidelity and relevance of in vitro models for disease modeling and therapy testing. Integration of these materials into wearable devices enables the creation of comfortable and adaptive interfaces with the human body. Utilization of mechanical metamaterials in implantable devices promotes tissue regeneration, supports biomechanical functions, and minimizes host immune responses. Key design strategies and material selection criteria critical for optimizing the performance and biocompatibility of these metamaterials are elucidated. Representative case studies demonstrating recent applications in benchtop phantoms and scaffolds (in vitro platforms); footwear, architectured fabrics, and epidermal sensors (wearables); and implantable cardiovascular, gastrointestinal, and orthopedic devices, and multifunctional patches are highlighted. Finally, the challenges and future directions in the field are discussed, emphasizing the potential for mechanical metamaterials to transform bioengineering research by enabling novel functionalities and improving outcomes across diverse use cases.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401806","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401806","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical metamaterials represent a promising class of materials characterized by unconventional mechanical properties derived from their engineered architectures. In the realm of bioengineering, these materials offer unique opportunities for applications spanning in vitro models, wearable devices, and implantable biomedical technologies. This review discusses recent advancements and applications of mechanical metamaterials in bioengineering contexts. Mechanical metamaterials, tailored to mimic specific mechanical properties of biological tissues, enhance the fidelity and relevance of in vitro models for disease modeling and therapy testing. Integration of these materials into wearable devices enables the creation of comfortable and adaptive interfaces with the human body. Utilization of mechanical metamaterials in implantable devices promotes tissue regeneration, supports biomechanical functions, and minimizes host immune responses. Key design strategies and material selection criteria critical for optimizing the performance and biocompatibility of these metamaterials are elucidated. Representative case studies demonstrating recent applications in benchtop phantoms and scaffolds (in vitro platforms); footwear, architectured fabrics, and epidermal sensors (wearables); and implantable cardiovascular, gastrointestinal, and orthopedic devices, and multifunctional patches are highlighted. Finally, the challenges and future directions in the field are discussed, emphasizing the potential for mechanical metamaterials to transform bioengineering research by enabling novel functionalities and improving outcomes across diverse use cases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信